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Navigation and episodic memory depend critically on representing
temporal sequences. Hippocampal ‘time cells’ form temporal sequences,
butitis unknown whether they represent context-dependent experience or
time per se. Here we report on time cells in bat hippocampal area CAl, which,
surprisingly, formed two distinct populations. One population of time cells
generated different temporal sequences when the bat hung at different
locations, thus conjunctively encoding spatial context and time—‘contextual

time cells’. A second population exhibited similar preferred times across
different spatial contexts, thus purely encoding elapsed time. When
examining neural responses after the landing moment of another bat, ina
social imitation task, we found time cells that encoded temporal sequences
aligned to the other’s landing. We propose that these diverse time codes may
support the perception of interval timing, episodic memory and temporal
coordination between self and others.

The hippocampal formation is essential for navigation and episodic
memory'>. Both depend critically on coding of temporal sequences.
Extensive research has revealed hippocampal time cells that encode
temporal sequences®’—neurons that fire transiently and sequentially
atspecific times. Such time cells were found bothinrodents®™ andin
humans'®. Previous studies have reported on ‘re-timing’ of time cellsin
different contexts—for example, under different behaviors, in different
environments or when exposed to different odors®”>'*, However,
relatively little is known about the representation of time in different
spatial contexts—a question that is of great interest because space
andtimeare two cardinal variables that are encoded in the hippocam-
pus'®?. Furthermore, although social-spatial representations have
been foundin rodents®, bats** and humans®, nothing is known about
how the brain encodes time in a social situation. In this study, we set
outtoclosethese gaps, by investigating the neuronal representations
of time for self and other, in different spatial contexts.

Results

Time cellsin the bat hippocampus

We conducted neuronal recordings from dorsal hippocampal area CAl
of Egyptian fruit bats (Rousettus aegyptiacus) that were engagedinan
observational learning task”. We placed three landing balls at three dif-
ferentlocationsintheroom: A, Band Start (Fig. 1a,b). Bats were trained

inpairs—anobserver and ademonstrator (four pairsintotal). Thedem-
onstrator bat was trained to fly roughly randomly from the start ball to
ballAorB,land onitand then take offand fly back to the start ball. The
observer bat was trained to watch and remember the demonstrator’s
ball choice and imitate it after adelay of several seconds (Fig. 1b,c and
Extended DataFig.1a-c). The observer bat was rewarded with fruitonall
correcttrialsbutnotonincorrecttrials (Methods). The stationary delay
times on the balls (after landing) were highly variable (Fig. 1d), because
the bats took off voluntarily. We used a tetrode-based microdrive and
awireless electrophysiology system to record single-neuron activity
in dorsal hippocampal area CAl of the observer bat. In this study, we
analyzed data only when both bats were hanging motionlessly onone
of the landing balls (Fig. 1b, and Fig. 1c: the epochs are marked by red
rectangles for the observer andblue rectangles for the demonstrator).
Note that during the time that the bats were hanging from the landing
balls, they voluntarily did not move. We used the landing moment asa
reference time (¢ = 0) for aligning the CAl neuronal activity. This allowed
usto define six conditions—2 bats (observer or demonstrator landing)
x 3 locations (Extended Data Fig. 1b)—and, thus, measure the activity
of time cells in the observer’s CAl aligned to the landing moments of
each bat, in three different locations in the room. To our knowledge,
thisis thefirst study thatinvestigated time cells at different locations,
within the same environment.
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Fig.1| Time cellsin bat hippocampal area CAl. a, Top view of experimental
room. Three landing balls were positioned inside the room, designated ‘Start’,'A’
and ‘B’ b, The three conditions that were used to analyze and align self time cells.
¢, Schematic ethogram describing the behavioral task. An observer bat (red) and
ademonstrator bat (blue) flew alternatingly from the start ball to either ball A

or ball Band back. Here we analyzed only epochs when both bats were hanging
motionlessly on the landing balls, with each epoch starting at the landing
moment of one of the bats (colored rectangles at bottom). d, Distribution of trial
durations (time spent by the observer bat on the landing ball, from landing to
takeoff, pooled over the three balls); the last bin corresponds to trial durations
>20 seconds. Median trial duration: 7.4 seconds (red arrowhead). e, Example time
cell. Top, spike raster: x axis, elapsed time from the moment the bat has landed
(time 0); y axis, repeated landings (trials). Each line in the raster represents the
spiking activity inasingle trial; each tick represents one spike. Trials were sorted
according to trial duration; the thin gray line denotes the trial end (shown are
only spikes contained within the trial). Middle, color-coded raster showing the
instantaneous firing rate in each trial, arranged as the spike raster above. Color
scale ranges from zero (blue) to the maximal firing rate in the panel (red; maximal
rate). Bottom: Temporal tuning curve (black trace), whichis the averaged firing
rate of the neuron (average of the color-coded raster above). Preferred time is
indicated above the peak firing (marked also by vertical red line). Green shading:
statistically significant time bins. Red curve: width at half height of the time
field.f, Color-coded rasters for additional ten examples of time cells, showing

instantaneous firing rate on single trials: x axis, elapsed time from the landing
moment (time 0); y axis, repeated landings (trials), sorted according to trial
duration. Eachraster corresponds to asingle location in the room (indicated
above theraster), and each line in the raster represents the instantaneous firing
rate of the cellin each trial, in 100-ms bins; color scale ranges from zero (blue) to
the maximal firing rate in each panel (red; the maximal rate is indicated above the
raster). Cellsare arranged according to preferred time, from top left to bottom
right. Both rewarded (correct) and non-rewarded (incorrect) trials were included
intherastersineand fandinall the rasters in the paper. See additional 20
examples in Extended Data Fig. 3. g, Firing sequences formed by time cells in each
ofthe three locations in the room (balls A, B and Start). x axis, elapsed time from
the landing moment; y axis, temporal tuning curve of each time cell, averaged
across trials, sorted by the cell’s preferred time, and z-scored. Color scale ranges
from zero (blue) to the maximal z-scored firing rate across all the neurons for
eachlocation (red). h, Venn diagram: total numbers of time cells and place cells
(circleareasin the Venn are scaled according to the indicated values, here and in
all Venn diagrams elsewhere). i, Time cells exhibited stable tuning. Main panel:
high Pearson correlations between the neuron’s temporal tuning curve in short
trials, with duration < median trial duration, versus long trials > median trial
duration (n =274 cells x positions; y axis shows counts; median of correlations:
r=0.73).Inset: distribution of Pearson correlations between odd and even

trials for time cells tuned on ball A (orange line), ball B (blue) and start ball (red),
showing stability of time tuning across trials at each location (y axis, fraction).
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We first examined time cells in the observer bat relative to its
own landings (Fig. 1b). Out of a total of 391 well-isolated cells, 190
neurons (48.6%) were significant time cells on at least one landing ball
(Fig. 1e,f and Extended Data Fig. 2a and an additional 20 examples in
Extended DataFig. 3), fulfilling the following criteria (Methods): (1) the
cellexhibited asignificant transientincrease in firing within a specific
time period after landing, which lasted for >3 consecutive 100-ms time
bins (one-sided t-test versus shuffle: P < 0.01, Bonferroni-corrected);
and (2) the firing rate was significantly enhanced within the time field
in at least 40% of the trials, indicating stability (the mean number
of trials per session per landing ball was 44 trials). Time cells were,
thus, defined as neurons that fired transiently but reliably at a par-
ticular time after landing, while both bats were stationary (examples:
Fig.1le,fand Extended DataFigs.2a and 3; population: Fig.1g,h). Nota-
bly, the cells maintained temporal precision, despite the considerable
trial-to-trial variation in the time spent by the bat on the balls (see
vertical bands of activity in the examples in Fig. 1e,f and Extended
DataFigs.2aand 3, as compared to the diagonal end of trials). We also
found high correlation of the time tuning in short trials versus long
trials (Fig. 1i, main panel) and stable tuning across odd and even trials
(Fig. 1i, inset). This temporal stability is in contrast to previous stud-
ies in rodents™°, which used a different paradigm (block design) and
reported ‘re-timing’ of time cells when the trial duration was abruptly
changed. Different time cells in bat CA1 had different preferred times
(Fig. le-g); the preferred time was defined as the time of the peak fir-
ing rate within the significant time field (Fig. le, bottom, and Extended
Data Fig. 2a), and, as a population, the preferred times spanned the
behavioral waiting time of the bats on the landing ball (median wait-
ing time: 7.4 seconds; Fig. 1d), with an over-representation of earlier
times. All the time cells exhibited only a single significant time field in
eachlocation (except one neuron that had two time fields on one of the
landingballs). The width of the time field (its duration) increased with
the neuron’s preferred time (Extended Data Fig. 2d)—that is, the time
resolution deteriorated with the passage of time, as reported also for
time cellsinrats”®'>", and consistent with Weber’s law for the percep-
tion ofinterval timing'>?. The temporal tuning of time cells could not
be explained by the occurrence of sharp-wave ripples (SWRs) (Extended
Data Fig. 2g,h). Notably, time cells exhibited similar time tuning in
both correct and incorrect trials (Fig. 2a,b), suggesting that the cells
were not responding to the reward®, because there was no reward on
incorrecttrials. This also indicates that the temporal responses of time
cells were not caused by stereotypical chewing movements, because
onincorrect trials the bats did not have any food reward to chew, but
the neurons still maintained their time tuning. We alsorecorded head
acceleration from the observer bat using an accelerometer, which
further ruled out the possibility that stereotypical movements could
underlie the time responses (Fig. 2c,d and Extended Data Fig. 4; see
details in the Methods).

Notably, we found that simultaneously recorded time cells exhib-
ited firing sequences that were very similar to the sequences found
when time cells were pooled across all the recording days (Extended
DataFig.5a-d). This demonstrates that the pooled sequences (Fig. 1g
and Extended Data Fig. 5a) are reliably representing the within-day
sequences (Extended Data Fig. 5b-d), indicating that the ensemble of
time cells in the bat hippocampus forms internally generated firing
sequences that span the behavioral epoch.

Next, we examined several additional properties of time cells. First,
the time tuning was stable both within session (Fig. 1i; medianr=0.73)
and across consecutive sessions (Extended Data Fig. 6a-c; median
correlation of temporal tuning curves: r= 0.82; see also Extended Data
Fig. 6d). Second, we examined the relation between time tuning,
measured during motionless hanging, and place tuning, measured in
flight. We found that time cells and place cells were largely overlapping
cell populations (Fig. 1h): similar to rats, most time cells (71%) were
also place cells”®'°, However, there was no strong systematic relation

between the location of the place field recorded in flight and the pre-
ferred time of the time field (Extended Data Fig. 7), similar to rats®*.
Third, time cells were found in all individual animals (Extended Data
Fig. 8b-d). Fourth, we noticed a difference between the distribution
of preferred timesin the Startlocation (Fig. 1g, right) versuslocations
AandB (Fig. 1g, leftand middle). This difference in the time represen-
tation could be due to the different physical shapes of the landing
balls: whereas the start ball was ellipsoidal, landing balls A and B were
spherical (Extended DataFig.1a,b). This difference could also be due to
the behavioral task: only inthe Startlocation was the observer landing
next to another bat (the demonstrator)—a highly salient event—which
could underlie the over-representation of early times in the Start loca-
tionas compared to locations A and B. This explanation was supported
by analysis of data from a second session, in which we removed the
demonstrator bat from the room (Methods). Indeed, in this session,
the distribution of preferred times in the Start location became more
similar to thatinlocations A and B (Extended Data Fig. 6).

Two distinct neural populations: contextual and pure time cells

We next turned to the first central question of our study: Do hippocam-
pal time cells encode context-dependent time sequences or, rather,
represent time per se? To this end, we took advantage of the fact that
we had three different locations in the room—that is, three spatial
contexts—in all of which we measured time cells. Visual inspection of
our data revealed two subsets of time cells. (1) Most of the time cells
(64.7%,123/190) were significantly time tuned only in one particular
location while completely losing their time preference when the bat
was in either of the other two locations (Fig. 3a: top three rows show
three example cells that exhibited time tuning only in one location
in the room; and Fig. 3b: population). These time cells thus encoded
simultaneously time x spatial context. Indeed, across the entire popula-
tion, we found very different temporal tuning curvesamongthe three
locations. When sorting the neurons by preferred times in one loca-
tion, the firing sequences in the other two locations were largely lost
(Fig.3c; compare the diagonal panels to the off-diagonal panels). This
indicates, again, that alarge fraction of time cells encoded simultane-
ously time x spatial context (64.7% of all the time cells; Fig. 3b). We
called these neurons ‘contextual time cells’. We note that we cannot
dissociateif these neurons conjunctively encoded time x spatial context
or, perhaps, time x space (that is, time x spatial location), both of which
are interesting possibilities. Notably, although previous studies have
reported modulation of time cells in different contexts®”", it was not
shown across different spatial contexts and, in particular, in different
locations within the same environment. (2) The remaining time cells
were significantly time tuned in more than one location. These cells
tended to show asimilar time preferenceirrespective of the bat’sloca-
tion (35.3% of all the time cells; Fig. 3a: fourth row shows a time cell with
time tuningin locations A and B—see population analysis in Extended
DataFig. 8e,f—and the fifth row of Fig. 3a shows a time cell with time
tuninginlocations Aand B and Start). Thus, these were ‘pure’ time cells,
whichrepresented elapsed timein an abstract manner, irrespective of
place or context.

To examine more systematically the difference between these
two populations of time cells—contextual time cells versus pure time
cells—we focused onlanding balls A and B, for which the task was sym-
metric. We separated the time cellsinto two non-overlapping groups:
time cells that were tuned significantly on both A and B (Fig. 4a) and
time cells that were tuned significantly on A or Bbut not both (Fig. 4b).
We observedthat the time sequences of cells tuned on A and B remained
similar in both locations after sorting the cells based on their time
tuning on the opposite landing ball (Fig. 4a; note the time sequences
in the upper-right and lower-left panels, marked with arrows). This
observation further suggested that the time tuning of cells tuned on
AandBtended to besimilarin different locations. We note that having
asimilar time preference in different locationsis non-trivial, because,
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Fig. 2| Controls for reward and movement. The firing of time cells cannot be
explained by rewards or by chewing movements. a, Firing sequences formed
by time cells in correct trials (left; trials in which bats performed correctly and
received reward) and incorrect trials (right; trials in which bats did not receive
reward), pooled over the two locations in the room where reward was given (balls
Aand B; shown are all cells x positions that had >10 correct and >10 incorrect
trials: n=166). x axis, elapsed time from the landing moment; y axis, temporal
tuning curve of each time cell (firing rate averaged across trials). The temporal
tuning curve of each neuron was z-scored. Color scale ranges from zero (blue)
to maximal z-scored firing rate across all neurons (red). Time bins that did not
contain enough data were colored white (this was most prevalent in tuning
curves forincorrect trials, which were shorter because no reward was given, so
bats tended to stay for shorter durations on the balls). Both panels were sorted
by the cell’'s preferred time in the correct trials (that is, sorted according to left
panel; note that each cell can appear here once or twice, depending on if it was
tuned onball A, Borboth). b, Scatter plot of preferred time in correct trials,
when bats received reward, versus preferred time inincorrect trials, when bats
did not receive reward. Dots: cells x positions (n = 166: same cells x positions as
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ina); gray diagonalline: identity line. Note high correlation between preferred
timein correct, rewarded trials and incorrect, non-rewarded trials (Spearman
correlation p = 0.6; P=9.8 x107"; two-sided test). ¢,d, The firing of time cells
cannot be explained by fine movements (measured using an accelerometer; we
included here n =133 time cells (cells x positions), which are all the time cells for
which an accelerometer was recorded). ¢, Distribution of Pearson correlations
across trials between the time of peak firing in each trial and the time of per-
trial peak acceleration within the time field (gray bars). This distribution is
indistinguishable from the shuffle distribution (black line; shuffle distribution
shows the correlation for each time cell between time of peak firing in trial i and
time of peak acceleration in trialj, for i #; two-sided Kolmogorov-Smirnov
(KS) test between data and shuffle: P= 0.26; n =133 cells). d, Spike-triggered
average of accelerometer signal in each trial, averaged across trials and across
all time cells (acceleration shown in units of Earth acceleration, g; gray shading,
mean + s.e.m.; n =133 cells x positions). Inset: examples of spike-triggered
accelerometer signal (‘Acc.) fromindividual cells. Additional controls for
movement are shown in Extended Data Fig. 4.

here, the distinction between contextual and pure time cells was based
onwhether acellis tuned on A or B versus whether it is tuned on both
A and B—and, a priori, based on this selection criterion, there is no
reason that a time cell active in both locations should have a similar
time preference, as exhibited here by the pure time cells. Therefore,
the conserved time tuning of pure time cells is quite surprising.

To test this further, we compared the preferred times of cells
tuned on AandB inthe differentlocations. First, we found that 61.4%
(27/44) of the cells tuned on A and B had preferred time difference
<lsecond (Extended Data Fig. 8e, top). This percentage was 2-3-fold
higher than expected by chance (chance level could be quantified
in two ways: (1) 22.2% = the gray area in Extended Data Fig. 8e, top,
divided by the total area; or (2) 35.2% (333/946 shuffles), when cal-
culated using cell shuffling of cells tuned on A and B; Extended Data
Fig. 8e, bottom). Second, we found that the distribution of AT (pre-
ferred time on A - preferred time on B) for cells tuned on A and B was
centered around zero, with a prominent narrow peak (Fig. 4c, pink).
Furthermore, this peak was significantly narrower compared to the
distribution for cells tuned on A or B (Fig. 4c, green) (non-parametric
F-test (Ansari-Bradley test) for equality of variances P=6.8 x10™),
suggesting that cells tuned on A or B did not have a similar but weak

time tuning in their non-significantlocation. The distribution for cells
tuned on A and B (pink) was also significantly narrower compared to
three different shuffles (comparisons were done via non-parametric
F-test (Ansari-Bradley test) for equality of variances). (1) A and B
versus cell shuffling of cells tuned on A and B (Fig. 4c, pink versus
black dotted line: P=3.8 x10°%; for the cell shuffling, we computed
AT between cell i at location A and cellj at location B, for i #j). (2) A
and B versus cell shuffling of all cells (Fig. 4c, pink versus red dotted
line: P=5.9 x107). (3) AandB versus cell shuffling of cells tuned on A
and cells tuned on B but not tuned on both (Fig. 4c, pink versus blue
dotted line: P=1.02 x 10°%). The highly significant narrowness of the
AT distribution for pure time cells as compared to three different
shuffles emphasizes the robustness of our results—namely, that pure
time cells have similar time tuning in both locations. Similar time
tuning was found also for neurons that were significant time cells on
all three balls: A, B and start (Fig. 4d; non-parametric F-test versus
shuffle, P=4.2 x10°®). Furthermore, pure time cells were also stably
tuned across sessions (Extended Data Fig. 8h,i). Together, these
results suggests that the group of cells tuned on A and B contains a
large fraction of neurons that are pure time cells, encoding elapsed
timeirrespective of location and context.
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of firinginlocation A (top row), B (middle row) or Start (bottom row); icons of
Venn diagrams depict the group of time cells plotted in each row. Note that the
firing sequence of time cellsin one location was disrupted in the other locations
(compare across columns)—that is, most neurons encoded simultaneously time x
spatial context (or, alternatively, time x space).

By contrast, for the group of cells tuned on A or B, the time
sequence was completely lost between the two locations (Fig. 4b; see
also Fig. 4c: no difference between the A or B group (green) and the
shuffle for all cells: non-parametric F-test, P= 0.7). This demonstrates
that this group of neurons encoded simultaneously time x spatial
context—thatis, they were contextual time cells.

Next, we examined whether these two groups of time cells belong
to two distinct populations of cells, or do they form a continuum? To
thisend, we computed for each group the distribution of Pearson cor-
relations between the temporal tuning curves of each cellinlocation A
versus location Band compared it to three control shuffle distributions
(Fig. 4e; for the cell shuffling, we computed the correlations between
celliatlocation A and cellj at location B, for i #). The distribution of
correlations for the cells tuned on A or B was symmetric around zero
(Fig. 4e, green) and was statistically indistinguishable from the three
shuffle distributions (Fig. 4e; same three shuffles as in Fig. 4c; Kol-
mogorov-Smirnov test: P=0.274, P=0.10 and P = 0.24 for the three
shuffles; Wilcoxon rank-sum test: P=0.275, P=0.90 and P=0.48). By
contrast, the distribution of correlations for cells tuned on Aand B was
significantly skewed to the right (Fig. 4e, pink) and was significantly
very different from the three shuffle distributions and from the A or
B distribution (Kolmogorov-Smirnov test: P=4.5x107°,P=2.8x107,

P=2x10"%and P=2.1x107% Wilcoxon rank-sum test: P=2.8 x107%,
P=8.0x107,P=2.5%x10"°and P=8.6 x107°). The clear separation of
the distributions suggests that these are two distinct groups of cells
and notacontinuum (Fig. 4e, compare green-colored and pink-colored
distributions; we note that the firing rate characteristics did not differ
substantially between the two groups; Extended Data Fig. Sh). The
distinctness of the two populations was supported also by four further
analyses. (1) A statistical test demonstrated that these correlations were
not distributed unimodally but, in fact, had a dip (Hartigan’s dip test
for unimodality, pooling together the pink and green distributions of
PearsoncorrelationsinFig. 4e: P=0.015; see inset for the pooled distri-
bution—thered arrow in the inset shows the dip). (2) Asshown above,
we found a distinct dissimilarity among these groups of cells in terms
of the distributions of time differences (AT,¢.ime) betweenballs Aand
B:the A and B group exhibited a narrow distribution of time differences
(Fig. 4c, pink), whereas much wider distributions were exhibited by
the A or Bgroup and by additional three distributions of cell shuffling
(Fig. 4c). (3) The identity of pure time cells and contextual time cells
was stable across recording sessions (x? test: P=3.8 x107%), which is
consistent with the existence of two independent populations. (4)
To test if the fraction of pure time cells was significantly higher than
expected from the conjoint probabilities for neurons to be time cells
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Fig. 4| Two distinct populations of hippocampal time cells: contextual time
cells and pure time cells. a, Firing sequences for the subpopulation of time cells
significantly tuned inbothlocations A and B (n = 44 cells), plotted for locations A
(left) and B (right) and sorted by preferred time of firing in A (top) or B (bottom).
Note the similarity of firing sequences in both locations (see ‘halo’ when
comparing across columns—marked with black arrows). b, Same as a, but here
each row depicts the firing sequences of time cells tuned in either location Aor B
(n=125cells; see Vennicons). Note the complete disruption of firing sequences
inthe non-preferred locations (compare columns; note the absence of the ‘halo’
seenina).aandbare plotted asin Fig. 3c. ¢, Distributions (kernel density plots)
of the differencesin preferred time (AT) between balls A and B, for all time cell
pairs belonging either to the group of time cells tuned on A and B (pure time
cells, pink) or the group of time cells tuned only in one of the locations, A or B
(contextual time cells, green; here, the difference AT was calculated between
preferred time on the tuned ball and time of maximum firing rate on the other
ball, as these cells were tuned only on one ball). Three types of shuffles are
shown, allshowing AT for cell i at location A minus celljat location B, for i # (cell
shuffling). (1) Dotted black line: shuffle for the population of cells tuned on both
Aand B (946 shuffles from 44 cells)—that is, where the same cell was tuned on
both. (2) Dotted red line: shuffle for all cells (14,196 shuffles from 169 cells). (3)
Dotted blue line: shuffle distribution of AT between preferred times of tuned cells
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(where cell i was significantly tuned on ball A and cellj was significantly tuned on
ball B (but not tuned onboth), for i #; 5,577 shuffles from 213 responses). Note
the distribution of AT for time cells tuned on A and B (pink) was centered around
zero, with a prominent peak, and was significantly narrower than the distribution
oftime cells tuned on A or B (green) (two-sided non-parametric F-test (Ansari-
Bradley test) for equality of variances: P= 6.8 x 10™*); and it was also significantly
narrower than the three shuffle distributions (two-sided non-parametric F-test
of the pink distribution versus the three shuffles: P=3.8 x 102, P=5.9 x 10 and
P=1.02x107%).d, Distributions (kernel density plots) of differences in preferred
time (AT) amongballs A, B or start, for all pure time cells that were significantly
tuned on A and B and start (pink; n =17 cells). Time differences AT for each cell
were pooled across the three pairs of balls. Dotted black line: shuffle distribution
of AT for all cells. Data distribution was significantly narrower than shuffle
(non-parametric F-test: P=4.2 x107%). e, Distributions of Pearson correlations
between temporal tuning curves on ball A versus ball B for all pairs of time
cellstuned on A and B (pink: the cells in @) and for pairs of time cells tuned on
AorB(green:the cells inb) as well as for shuffled cell pairs (black, red and blue
dotted lines: three cell-shuffling populations, same as in ¢). Inset: distribution of
Pearson correlations for all time cells; red arrow marks the dip in the distribution,
indicating bimodality (Hartigan’s dip test for unimodality: P = 0.015).

in one of the locations separately, we used a binomial test, where the
chance proportion of time cells expected to be tuned inboth Aand B,
orin A and B and start, is equal to the multiplication of the observed
probabilities on each landing ball separately (p(ball A) = 115/391; p(ball
B) =98/391; p(start ball) = 61/391). The observed fraction of pure time
cells was significantly higher than expected by chance (binomial test:
P=0.0037forthe 44 puretimecellstunedonAandBandP=4.3x10°¢
for the 17 pure time cells tuned on all three locations). These results
thusreveal the existence of two distinct populations of time cells: one
population that encodes elapsed time per se and another population

that encodes time x spatial context. Interestingly, despite the func-
tional bimodality, these two populations were anatomically intermixed
in dorsal CAl (in 75% of the tetrodes, we recorded both types of time
cellsonthe same tetrode).

Finally, Bayesian maximum likelihood decoding revealed thateach
ofthese populations of time cells represented time very precisely, with
decoding error <0.6 seconds over the entire temporal range of 8 sec-
onds (Extended Data Fig. 5e; see also Extended Data Fig. 5f, showing
‘cross-decoding’ of time using only pure time cells with AT difference
of <1 secondin preferred time; Methods).
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Time cells for other individuals

Finally, we asked whether there are time cells in the hippocampus that
encodeelapsed time from the landing moment of the other bat (dem-
onstrator; Fig. 5a). Surprisingly, we found time cells for the other bat,
with significant and reliable transient firing at a specific time relative
to the landing moment of the other bat (examples: Fig. 5b; see addi-
tional 12 examples in Extended Data Fig. 9¢; population: Fig. 5c-g; we
used here the same criteria as used for defining time cells for self). The
firing of these time cells for the other could not be explained by self
movements of the observer bat, because the observer was motionless
on the start ball (Fig. 2c,d and Extended Data Fig. 4). It could also not
be explained as late firing of self time cells aligned to self (observer)
landing, because the stationary delay times on the balls were highly
variable (Fig. 1d). A total of 56 out of the 391 recorded neurons (14.3%)
were significant time cells for the other. The firing rates of time cells
for the other were lower than time cells for self (peak firing rate: self:
6.36 +4.40 Hz, mean +s.d.; other:4.71+3.00 Hz; t-test: P= 0.011), but,
notably, thetemporal responses of time cells for the other bat were very
stable (Fig. 5h; median stability: r= 0.65). Similarly to self time cells,
the time cells for the other showed the following. (1) Increased width
(duration) of their time field as afunction of the neuron’s preferred time
(Extended Data Fig.9a)—thatis, the time resolution deteriorated with
the passage of time. (2) At the population level, these time cells formed
internally generated firing sequences for the other (Fig. 5¢, panels on
the diagonal), which spanned the entire waiting time of the other bat
(Fig. 5d; median waiting time, 5.7 seconds). Furthermore, simultane-
ously recorded time cells for the other exhibited firing sequences akin
to the pooled data (Extended Data Fig. 9b), suggesting that time cells
for the other bat forminternally generated firing sequences that span
the entire behavioral epoch. (3) The overall distribution of preferred
times was very similar for the time cells for self and other (Fig. 5f,g;
Kolmogorov-Smirnov test: P=0.12). Many of the time cells for the
other bat were also self time cells for the observer bat (Fig. 5i; n = 38);
interestingly, these neurons generally exhibited different preferred
times for self and other (Fig. 5j; Kolmogorov-Smirnov test compared
to cell shuffling: P=0.63; n=38). Some of the time cells for the other
batwere also social place cells***—that s, encoded the location of the
other bat when it was flying (Fig. 5k).

One caveat to the social nature of the time cells for the other bat
is that we could not analyze time cells for objects and, thus, could not
discern whether the responses are truly social (in session 2, where we
replaced the demonstrator bat with an object, we could not analyze
social time cells because the object was kept for only brief moments
on the landing ball; Methods). It remains to be determined whether

social time cells would be recorded in bats learning by watching the
movements of an object instead of a bat.

To test whether the time cells for the other bat encode pure time
or time x spatial context, we repeated some of the same analyses as
for the self time cells. First, we found evidence for neurons encoding
time x spatial context for the other bat (‘contextual time cells for the
other’). Most neurons (42/56, 75%) were significantly time tuned in
only one of the locations (Fig. 5¢,e). Second, we found evidence also
for puretime cells for the other bat. Twelve cellswere tuned onboth A
andB (21.4% of time cells for the other), and, notably, the distribution
of time difference AT for these time cells was centered around zero,
with a prominent peak (Fig. 5I, pink), and was significantly narrower
thanboththedistribution of time cellstuned on AorB (green) and the
shuffle distributions (dotted lines) (non-parametric F-test: comparing
AandBtoAorB: P=4.7x10* comparing A and B to the three shuffle
distributions (similar shuffles to Fig. 4c): P=2.5x10*, P=12x107
and P=0.11for the three types of shuffles—shuffle of cells tuned on A
and cells tuned on B but not tuned on both (blue dotted line); shuffle
of all cells (red dotted line); and shuffle of cells tuned on A and B (black
dotted line)). By contrast, there was no significant difference in the
distribution width for the time cellstuned on A or B (green) versus the
shuffle distribution for all cells (red dotted line; P= 0.08). The narrow
distribution of AT for the 12 time cells that were tuned in both locations
A and B (pink) may suggest that these time cells for the other had the
same time preference, regardless of the location—that is, were ‘pure
time cells for the other’. Together, these resultsindicate that time cells
forthe other encoded elapsed time for the other bat, viainternally gen-
erated firing sequences, withsome of these neurons being contextual
time cells, simultaneously encoding time x spatial context for the other
bat, whereas other neurons were pure time cells for the other.

Discussion

Inthis study, we found time cells in bats that were stationary on resting
platforms. We identified two distinct populations of self time cells.
Contextual time cells were highly selective to the spatial context and
could, thus, beinvolved inencoding episodicinformation (what, where
and when). Pure time cells exhibited robust temporal tuning that was
invariant to location and context and could, thus, represent elapsed
time per se, which, we propose, may support the perception of interval
timing. For both types of time cells, the encoding of elapsed time was
robust and unaffected by trial duration—that is, their time tuning did
not show re-timing for different trial durations. We ruled out reward
delivery times as explaining the firing of time cells. Nevertheless, it
is still possible that the firing of time cells is explained by the bat’s

Fig. 5| Time cells for the other bat. a, The three conditions that were used to
analyze and align time cells for the other bat. b, Seven example time cells for
the other bat (demonstrator): neurons that were recorded in hippocampal
area CAl of the observer bat, and which showed significant and reliable firing
atapreferred time moment after the landing of the other bat, plotted as in Fig.
1f. See additional 12 examples in Extended Data Fig. 9c. ¢, Firing sequences
ineach of the three locations in the room (columns), plotted separately for

the populations of time cells for the other bat that were significantly tuned in
eachof the three locations (rows), plotted asin Fig. 3c. d, Distribution of trial
durations for the demonstrator bat (that is, waiting times of demonstrator

bat on the landing balls); the median trial duration was 5.7 seconds (blue
arrowhead). e, Venn diagram: total numbers of time cells for the other batin the
three locations. f,g, Similar distributions of preferred times for self and other.
f, Cumulative distribution of preferred times for the time cells for self (red) and
time cells for the other bat (blue). y axis normalized to total number of recorded
cells x positions. Note the high similarity of the two distributions (two-sided
Kolmogorov-Smirnov test: P= 0.12). g, The ensemble activity of time cells for
the other bat (bottom) spanned a similar time interval as the time cells for self
(top); shown are significant temporal responses for all three locations (cells

x positions). Each panel was plotted as in Fig. 1g. h, Stability of the temporal
tuning curve for each time cell for the other bat (cells x positions). Shown is the

distribution of Pearson correlations between the cell’s temporal tuning curve in
short trials (duration < median trial duration) versus its temporal tuning curve
inlong trials (> median trial duration; median value of correlations: r = 0.65).1,
Total numbers of time cells for the other bat and time cells for self. Cell counts
here refer to neurons, unlike g where numbers represent cells x positions.

j, Distributions of AT between preferred times for self and other, for the 38

time cells that were tuned for both self and other (green); this distributionis
statistically indistinguishable from shuffled cell pairs where AT was calculated
between the preferred time for selfin cell i and preferred time for other in cellj,
fori#j(same n =38 cells; two-sided Kolmogorov-Smirnov (KS) test: P= 0.63).
k, Total numbers of time cells for the other bat and of social place cells. 1,
Distributions (kernel density plots) of the differences in preferred time (AT)
between balls A and B, for all the time cells for the other bat that belonged either
to the group of time cells tuned on A and B (pure time cells for the other; pink)
orto thegroup of time cells tuned only in one of the locations, A or B (contextual
time cells for the other; green) (pink versus green: two-sided non-parametric
F-test (Ansari-Bradley test) for equality of variances: P=4.7 x10*). Dotted
lines: three shuffle distributions, plotted as in Fig. 4c (two-sided non-parametric
F-test of pink distribution versus the three shuffles: P= 0.11,P=1.2 x 10~ and
P=2.5x10"*).NS, not significant.
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expected reward delivery time; under this interpretation, the trigger
for the time sequence is the time of reward expectation rather than
thetime of landing per se. This seems, however, less likely because, on
incorrect trials, there was noreward—hence, the bat most likely did not
expectany reward on these trials—and yet the time cells firedinavery
similar manner as on correct, rewarded trials (Fig. 2a,b). Nevertheless,
future work should be done to examine more specifically whether
expectation of reward (rather than actual reward delivery) triggers
firing of time cells.

Our study revealed four main findings. (1) First, to our knowledge,
thisis thefirstreport on two distinct bimodal populations of time cells
(in this case, pure and contextual time cells). (2) Second, this is the
first study that found different time coding by time cells in different
locations within the same environment. Previous studies reported on
time cellsin completely different spatial contexts”? but not in different
locations within the same environment. (3) Third, the intriguing pure
time cells, which encoded time per se, not linked to any behavioral
sequence or context, provide, to our knowledge, the first example, in
any species, of neurons that purely encode elapsed time. (4) Fourth,
another surprising resultis the finding of cells encoding elapsed time
for another individual; such cells were not reported to date. Previous
studies havereported internally generated firing sequencesin anum-
ber of brain regions, and these sequences were shown to represent a
variety of cognitive variables relative to the behavior of the self®*°,
However, the present work is the first to show internally generated
sequencesrelative to the behavior of another agent, inasocial context.
These internally generated sequences (i) may represent elapsed time
for the other or (ii) may represent sequential activity of self time cells
that was triggered by an external cue or sensory stimulus—such as the
sight or sound of the other bat’s landing or by the increased rate of the
other’s biosonar signals as it landed**. (iii) Or, perhaps, these inter-
nally generated sequences represent memory of selflanding that was
retrieved upon the other bat’s landing. Although we cannot dissociate
these possibilities, in all these cases the trigger for the sequence wasan
event ‘out there’ rather than the behavior of the implanted bat itself.
Importantly, to our knowledge, this is the first demonstration of time
cellsequences inthe mammalian hippocampus that are triggered by an
external action of another conspecific and, thus, constitute an explicit
temporal representation of elapsed time for another individual. This
alsohintsat the possible existence of two reference frames for time: one
reference framethatis triggered by the animal’s own actions (self time
cells) and another reference frame thatis triggered by external events
(other’stimecells). A neural representation of elapsed time for others
may be crucial for the survival and reproduction of social animals, as
any social interactions require temporal coordination. Furthermore,
it is possible that shared mechanisms exist for remembering events
that happened to oneself (that is, episodic memory) and events that
happenedto otherindividuals. We, therefore, speculate that the cod-
ing of time x spatial context for self and other, described here, could
be part of a rudimentary brain mechanism for representing episodic
memories for selfand others.

Online content

Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information,
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Methods

Subjects and behavioral setup

We collected data from four pairs of adult male Egyptian fruit bats
(Rousettus aegyptiacus; eight bats in total, weights 160-179 g). Each
pair consisted of an ‘observer bat’ and a‘demonstrator bat’, which were
trained to fly in a flight room (2.35 x 2.69 x 2.56 m; Fig. 1a). The pair of
bats were not siblings but were cagemates that were housed together
for several weeks to months before the start of the experiment and
were, thus, highly familiar with each other. The demonstrator bat in
each pair was usually the more dominant male, and it was a highly
trained animal—both of which played an important role in the task®.
The observer bat in each pair was always the bat that, after training,
wasimplanted with amicrodrive for electrophysiological recordings.
The flight data from this experiment were published elsewhere?; here
we report on unpublished data, taken only from stationary epochs,
when both bats were hanging motionlessly on the balls and neither of
them was flying (Fig. 1b,c and Extended Data Figs.1and 4). The room
was dimly illuminated (illuminance level: 3 lux). We positioned three
landing ballsin three different locations inside the room: ‘Start’,’A’and
‘B’ locations (Fig. 1a and Extended Data Fig. 1a,b). Landing balls A and
Bwereelevated spheres (12-cm diameter; height above floor: 115 cm),
positioned at the far corners of one side of the room; the start ball was
anelevated ellipsoid (12 x 30 cm, height above floor: 150 cm) and was
positioned next to the wall that was opposite to balls A and B (Fig. 1a).
The linear distance between the start ball and landing balls A and B
was -170 cm. The balls always remained in the same locations, across
all experimental days and all bats.

We conducted three kinds of behavioral sessions®, but, for this
study, we analyzed only session 1throughout the paper as well as ses-
sion 2 in Extended Data Fig. 6 and Extended Data Fig. 8g-i. Session 1,
the ‘observer-demonstrator’ session, was conducted in all four pairs of
bats. The demonstrator bat was trained to fly roughly randomly from
the start ball to ball A or B. It was then rewarded by the experimenter,
regardless of its flight choice. The demonstrator bat then flew back to
the start ball, on its own volition. The observer bat (from whose hip-
pocampus we recorded; see below) was trained to remain stationary
and wait for the demonstrator to return to the start ball; and after its
return, the observer was trained to imitate the demonstrator’s ball
choice—thatis, the observer had to fly to the same ball as the demon-
strator (Extended Data Fig. 1a-c). On correct trials, the experimenter
manually rewarded the observer bat for correct performance with
~0.05 ml of bananamash; all the correct trials were rewarded; no reward
wasgivenonincorrecttrials. The reward was given only onballs A and
B, notonthestartball, and it was always givenimmediately after land-
ing or soon thereafter; this was the case for both the observer and the
demonstrator. Inall the analysesin this study, we always analyzed data
from correct and incorrect trials pooled together—except Fig. 2a,b,
where we separated them and explicitly compared neuronal responses
on correct versus incorrect trials. The time of reward delivery by the
experimenter (as extracted from the video) was highly variable and did
not affect the firing of time cells (Extended Data Fig. 4g-i).

We defined the onset of each trial as the landing moment of one of
the batson one of thelanding balls (see ‘Estimating the locations of the
bats’ below). For ‘self time cells’ (see ‘Definition of time cells’ below),
the trial onset was defined as the landing moment of the observer
bat;and, for ‘time cells for the other’, the trial onset was defined as the
landing moment of the demonstrator bat. We defined the trial end as
follows (Fig. 1c and Extended Data Fig. 1). For self time cells: when the
observerbatlanded on balls A or B, we defined the trial end as the take-
off moment of the observer back to the start ball; when the observer
bat landed on the start ball, we defined the trial end as the takeoff
moment of the demonstrator bat (the other bat) away from the start
ball. Likewise, for time cells for the other: when the demonstrator bat
landed onballs A or B, we defined the trial end as the takeoff moment
ofthe demonstrator back to the start ball; when the demonstrator bat

landed onthe start ball, we defined the trial end as the takeoff moment
ofthe observer (theimplanted bat) away from the start ball. Note that,
inall of these cases, both bats were stationary on one of the landing balls
during the entire trial (Fig. 1c and Extended Data Fig. 1b,c). Note also
that the trial duration varied substantially from trial to trial, because
the bats took off on their own volition (Figs. 1d and 5d).

Attheend of session1, weremoved the demonstrator bat from the
flight room. Session 2 was conducted in two of the four pairs of bats and
was analyzed only in Extended Data Figs. 6 and 8g-i. In this session,
which started immediately after session 1, we replaced the demon-
strator bat with a plastic object (‘informative object’). We mounted
the object on a thin metal rod and manually moved it from the start
ball, roughly randomly, to either ball A or ball B and then back. We
trained the observer to follow the same set of behavioral rules as in
the ‘observer-demonstrator’ session 1, but, this time, we trained it
to imitate the object’s ball ‘choices’ instead of the ball choices of the
demonstrator bat. The set of all behavioral sessions was flanked by
sleep sessions (~5-10 minutes each).

After training, the observer bat in each pair was implanted with
a four-tetrode microdrive for electrophysiological recordings. We
recorded the neuronal activity continuously throughout all the ses-
sions, including the sleep sessions, to facilitate spike sorting and to
assess the stability of the recorded neurons.

Surgery and recording techniques

The Institutional Animal Care and Use Committee of the Weizmann
Institute of Science approved all the experimental procedures used
in this study. After the training was completed, we implanted the
observer bat with a microdrive (weight 2.1g), loaded with four tet-
rodes, where each tetrode was constructed from four strands of insu-
lated wire (17.8-pum diameter platinum-iridium wire), as described
previously?** %, Tetrodes were gold-plated to reduce wire impedance
to arange between 0.3 MQ and 0.7 MQ (at 1 kHz). We implanted the
microdrive above the right dorsal hippocampus (3.1-3.5 mm lateral
to the midline and 5.8-6.3 mm anterior to the transverse sinus that
runs between the posterior part of the cortex and the cerebellum).
Surgical procedures were similar to those described previously>%,
We used aninjectable mixture of anesthetics composed of medetomi-
dine 0.25 mg kg™, midazolam 2.5 mg kg™ and fentanyl 0.025 mg kg™
and subsequently added additional injections as needed, based on
the bat’s monitored vital signs. After surgery, over the course of the
next 1-2 weeks, we lowered the tetrodes slowly toward the dorsal CAl
pyramidal cell layer while provisionally assessing the positions of tet-
rodes in the layer by the presence of high-frequency field oscillations
(‘ripples’) and associated neuronal firing. Tetrodes advancement was
done under visual inspection of electrophysiological signal in real
time using Neuralynx Digital Lynx SX and Neuralynx Cheetah (version
6.3.0). Later, we also verified the tetrodes’ positions histologically: the
histology confirmed that all the tetrode tracks were localized in dorsal
CAl (see example in Extended Data Fig. 1e). For each bat, we left one
tetrode asareferenceinanelectrically quiet zone. The remaining three
tetrodes served as recording probes. During recordings, we attached a
16-channel wireless neural recording device (‘neural logger’, Deuteron
Technologies) to an Omnetics connector on the microdrive. Signals
from all 16 channels of the four tetrodes were amplified (x200) and
band-passfiltered (1-7,000 Hz) and were then sampled continuously
at 29.3 kHz per channel and stored onboard the neural logger. Dur-
ing subsequent processing, we further filtered the neural recording
between 600 Hzand 6,000 Hz for spikes and then extracted 1-ms spike
waveforms using a voltage threshold.

Spike sorting

All spike sorting procedures were identical to those described previ-
ously?>***In brief, we sorted the spike waveforms based on their
relative energies and amplitudes on different channels of each tetrode
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(using the SpikeSort3D software from Neuralynx, version 2.5.2.0). Data
from all sessions—the behavioral sessions and the sleep sessions that
flanked the behavior—were spike sorted together. We manually selected
well-isolated clusters of spikes and verified arefractory period (<2 ms)
intheinterspikeinterval histogram. We included only neurons that (1)
were stablyisolated throughout all the relevant sessions; (2) fired >40
spikes on at least one of the balls during the rest periods of the bat; and
(3) had an average firing rate <10 Hz across the entire experiment (to
exclude interneurons). Overall, 391 well-isolated, stable, active cells
wererecorded from dorsal hippocampal area CAl of four observer bats.

Video tracking

Thelocations of the two bats (observer and demonstrator) were tracked
simultaneously using two color cameras located at two of the upper
corners of the room. The cameras were connected to a video tracker
system (Neuralynx Cheetah VTS), which tracked the location of omnidi-
rectional LEDs mounted onthe bat’s head. The video tracker operated
ata25-Hzrate and tracked the two bats separately by the colors of the
LEDs: red LED on the observer bat and blue LED on the demonstrator
bat. Thevideo tracking datawere synchronized with the neural databy
recording apseudo-random sequence of TTL pulses on both systems;
thisyielded a synchronization accuracy of <1 ms.

Data analysis
All the behavioral and neural data in this study were analyzed using
custom code writtenin MATLAB.

Estimating the locations of the bats

We reconstructed the three-dimensional (3D) locations of the bats
using the direct linear transform algorithm, applied to data from two
cameras and two video trackers (Neuralynx Cheetah VTS)**%, We iden-
tified individual flights by local peaks in the flight velocity that had
maximal velocity >1.2 ms™. We defined landing and takeoff events by
thelocal minimain the flight velocity at the beginning and end of each
flight. We then correlated each flight with the average flight velocity
profile. Flights with Pearson correlation of r > 0.8 were treated as valid,
directed flights and were included in the analysis*; in particular, the
takeoff moments and landing moments of these valid flights were used
to delimit valid trials of the bats on the landing balls, which we then
analyzed here. Toimprove the accuracy in estimating flight velocity, we
smoothed the bat’slocation using asmoothing spline (csaps.min MAT-
LAB), based on which the instantaneous velocity was computed. The
detection of landing moments and takeoff moments was performed
identically for the observer bat and for the other bat (demonstrator).
In this study, we aligned all the time plots to the landing moment of
thebat (either self or other), exceptin Extended Data Fig. 2b where we
aligned to the takeoff moment.

Definition of time cells

Time cells for self and for other were defined in the same manner. For
analyzing time cells, we included only epochs when both bats were
hanging motionlessly fromthelandingballs (Fig. 1c and Extended Data
Fig.1a-c). In our analysis, we used both correct (rewarded) trials and
incorrect (non-rewarded) trials. To detect time cells, we first calculated
the firing rate of each cell in each trial, aligned to the bat’s moment of
landing, and up to the moment of takeoff (with landing and takeoff as
defined above in the section ‘Estimating the locations of the bats’).
Thebats took off voluntarily, so the stationary delay times on the balls
were highly variable in duration (Figs. 1d and 5d). We used time bins of
100 ms and smoothed the single-trial firing rates using a fixed Gauss-
ian kernel (o = 2.5 bins; we used temporally symmetric filtering with
no time shift, using MATLAB's filtfilt.m function; to avoid edge effects
duringfiltering, we computed the single-trial firing rate using long time
margins before landing and after takeoff and then filtered it and then
cut the margins after filtering). We then used the time course of the

firing rate in each trial to construct the average time course of the fir-
ingrate of the cell, averaged across trials—that is, a ‘post-stimulus time
histogram’ (PSTH); we termed this PSTH the ‘temporal tuning curve’
(see examples in Fig. 1e, bottom; Extended Data Fig. 2a, bottom row;
Extended DataFig. 3; Extended DataFig. 4a, middle row; and Extended
DataFig. 9c). The temporal tuning curve was calculated independently
for each of the three different locations in the room: landing balls A
and B and the start ball. Note that, because the trial durations varied
(Fig.1d), the number of trials contributing to each time bininthe PSTH
decreased monotonically over time; we calculated the temporal tun-
ing curve using only time bins with at least ten trials. Significant time
cells (either for self or for the other bat) were required to fulfil the
following criteria. (1) Significance: The neuron had asignificant firing
rate in at least three consecutive time bins of 100 ms—that is, signifi-
cant time field 2300 ms (we note that 95.3% of the time fields were, in
fact, significant for =1 second). To this end, we constructed a shuffle
distribution for each bin. We shifted the instantaneous firing rate of
each trial by a shift value that varied from zero to the trial duration,
drawn from a uniform distribution; each trial was shifted rigidly and
circularly by a different random shift value; we repeated this calcula-
tion10,000 times, with shifts performed independently for each trial,
to obtainthe shuffle distribution for each time bin. We then compared
theempirical average firing rate in each bin toits shuffle distribution.
Timebinsinwhich the temporal tuning curve was higher than the 99th
percentile of the shuffle distribution were considered as significant
time bins (P < 0.01; Bonferroni-corrected for multiple comparisons
by the number of bins in the temporal tuning curve /10 (where ten
bins—thatis, 1 second—isroughly the smallest field widthin the data);
significant timebinsare shown as greenrectanglesinFig.le, Extended
Data Fig. 2a (bottom row), Extended Data Fig. 3 and Extended Data
Fig.4a,c (middle and bottom rows)). (2) Reliability: The time field of the
cell was significant in at least 40% of the trials (to this end, we defined
significant time bins for each trial as time bins that showed instantane-
ous firing rate >99th percentile of the shuffle distribution at the same
time bin, Bonferroni-corrected as in (1)). Note that the mean number
of trials per session for each landing ball was 44 trials. We also note
that the temporal tuning was stable across trials (self: Fig. 1i; other:
Fig.5h). (3) The peak firing rate of the temporal tuning curve was >1 Hz.
(4) The peak of the temporal tuning curve occurred after the moment
of landing and before the last time bin of the temporal tuning curve.
Thus, we defined a time cell—for both self and other—as aneuron that
exhibited astatistically significant, large and stable transient firing at
aparticular moment of time after the bat’s landing.

To identify time cells for self (observer bat), we used spikes
recorded from neurons in the observer’s hippocampal area CAl,
aligned to the observer’s landing moment (Extended Data Fig. 1b,
top). To identify time cells for the other bat (demonstrator bat), we
used spikes recorded from neurons in the observer’s hippocampal
area CAl, aligned to the demonstrator’s landing moment (Extended
Data Fig. 1b, bottom). As detailed above, we used the same criteria to
define significant time cells for self and time cells for the other bat. We
could not analyze time cells for the object because the object did not
stay enough time on the balls.

The ‘preferred time’ of the time field was defined as the time of
the field’s peak firing rate. The ‘field width” was defined as the width
at half height of the time field. These are shown in red in Fig. 1e (bot-
tom), Extended Data Fig. 2a (bottom row) and Extended Data Fig. 3.
The preferred time is marked by the thin vertical red line, and the field
width is marked by the thick red curve.

Controlling for observer bat movements

To control for effects of movements, we measured the head movements
of the observer bat using a nine-axis motion sensor that was part of
the neural logger on the observer’s head; the motion sensor datawere
synchronized to the neural data with a microsecond-level precision.
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This motion sensorincluded a three-axis accelerometer, which allowed
measuring the observer’shead movements atall4.5-Hz sampling rate.
The accelerometer signal was recorded on only a subset of the days
(on 70.4% of experimental days in which significant time cells for self
or other wereidentified). We note that the accelerometer on the bat’s
head measures very effectively not just head movements but also body
movements, as the bats were hanging upside down, akinto a pendulum.

For computing the trial-to-trial correlations between the acceler-
ometer signal and the firing time or firing rate (Fig. 2c or Extended Data
Fig.4b,d) and for computing the correlations between the accelerom-
eter signal on different trials (Extended Data Fig. 4e,f), we downsam-
pled the accelerometer signal to 10.4 Hz and then smoothed it with a
Gaussian kernel (o =1.5samples).

We performed several control analyses, which revealed the follow-
ing. (1) Overall, the acceleration signal during the firing of time cells was
flat (Extended Data Fig. 4a, bottom row, and Extended Data Fig. 4e),
indicating that the bats were largely motionless when the time tuning
was measured—that is, when the bats were hanging from the landing
balls. (2) There was very low similarity between the acceleration profiles
of pairs of trials recorded within the same session, indicating that the
bats did not perform stereotypical movements across trials (Extended
DataFig. 4e,f; mean Pearson correlation: r= 0.052). (3) Only afew time
cellsshowed any significant correlation between the trial-to-trial varia-
tioninfiringrateand the trial-to-trial variation in the acceleration signal
(Extended Data Fig. 4a-d). (4) There was no significant trial-to-trial
correlation between the timing of peak acceleration and the timing of
peak neuronal activity (Fig. 2c). (5) The spike-triggered accelerometer
signal was flat (Fig. 2d), suggesting that these CAl1neurons do not carry
amotor or premotor signal. (6) The firing of time cells is unlikely to
reflect preparatory activity before takeoff, because these neuronsfired
reliably at specific times after landing (Fig. 1f,i), despite the large vari-
ability in takeoff times (Fig. 1d), and their firing was also not locked to
takeoff (Extended Data Fig. 2b,c). (7) The firing of time cells is unlikely
toberelated to periodicbehaviors, such as breathing or ear movements
(Extended Data Fig. 4j), because time cells discharged only once per
trialand did not fire periodically. Taken together, these results suggest
that time cells encode the elapsed time from the moment the bat has
landed, unrelated to movement.

Decoding analysis

We used aBayesian maximum likelihood decoder*’to decode time for
the observer bat (Extended Data Fig. 5e,f). In Extended Data Fig. Se,
we decoded the elapsed time separately in each location in the room
(balls A and B and start), independently for each time bin, from t=0
to t = 8 seconds, using 200-ms time bins. For each time bin, we con-
structed theresponse vector rfromthe instantaneous spike counts of
the ensemble of time cells that were tuned at that locationin the room.
The ensemble probability Pr(rt;) was computed under the assump-
tion of Poisson firing (which is a standard assumption in Bayesian
decoding*®*") and was estimated using the tuning curve for each time
cell, independently for each trial, via a leave-one-trial-out procedure
(whereby, whenwe decoded trial kforaparticular neuron, the temporal
tuning curve was computed using all the trials for that neuron, except
trial k). The decoded time was defined as the time that maximizes the
log-likelihood function:

40

£(6) = S log (Pr(nit)

i=1

wheretheindexirunsover allthe time cells tuned at that location, and
jrunsoverallthe timebins, from¢=0to ¢t = 8 seconds.

The decoding error was defined as the difference between the
actual (real) time bin and the time bin that maximized the log-likelihood
function. To estimate the temporal decoding error of elapsed time in
Extended DataFig. Se (right), we computed the median decoding error

over 1,000 repetitions in each time bin. In each repetition, the spike
counts vector was composed of a different random selection of spike
counts from an ensemble of time cells (one random trial per neuron).
For decodingthe elapsed time using all the time cellsin Extended Data
Fig. Se (right, red line), the spike counts vector was composed of all
the time cells that were tuned in one of the locations in the room; the
location (and, hence, the set of tuned cells) was chosen randomly for
each iteration. For decoding the elapsed time using contextual time
cells in Extended Data Fig. 5e, right (peach-colored line), the spike
counts vector was composed of all the contextual time cells that were
tunedin one of the locations in the room; the location (and, hence, the
set of contextual time cells) was chosen randomly for each iteration.
Likewise, we also decoded the elapsed time using pure time cells only
(Extended DataFig. 5e, right (blue-colored line)).

In Extended Data Fig. 5f, we decoded the elapsed time using pure
time cells whose preferred time onballs A and B differed by AT < 1sec-
ond. For each trial in one location, we trained the decoder on the
responses in the other location (‘cross-decoding’).

The grayscale values in the confusion matrices in Extended Data
Fig. 5e, left, and Extended Data Fig. 5f represent the decoded prob-
ability divided by the uniform chance probability.

Place cells and social place cells

The spatial firing rate maps for place cells and social place cells were
computed as described previously?. In brief, the firing rate maps (for
example, Extended Data Fig. 7b, left) were constructed for flight peri-
ods only, separately for the two flight directions—that is, one map for
the flights from the start ball to landing balls A and B and a separate
map for the flights back. To ensure that takeoff and landing data did
not contaminate the flight epochs, we removed from analysis the parts
of the flight trajectory that were in the vicinity of the landing balls
(-20-cmradius around each landing ball). To compute two-dimensionl
(2D) classical place cell firing rate maps for the self bat (observer), we
used spikes recorded from neurons in the observer’s hippocampal
area CAland the corresponding flight trajectories of the observer. To
compute 2D firing rate maps for the other, demonstrator bat (that is,
toanalyze social place cells), we used spikes from neuronsrecordedin
hippocampal area CAl of the observer bat and the corresponding flight
trajectories of the demonstrator (other) bat. We used fixed-sized spatial
bins (10 x 10 cm?) and collapsed the time spent (occupancy) data and
the spike counts onto the horizontal 2D plane (x-y). We smoothed both
the spike count and time spent 2D maps with a fixed Gaussian kernel
(0 =1.5bins)and then divided, bin by bin, the smoothed 2D spike count
map by the smoothed 2D time spent map, to obtain a firing rate map.
Spatial bins (2D pixels) in which the bat spent <100 ms during the ses-
sion were excluded from analysis and from the 2D firing rate map and
were colored white. Significant place cells and social place cells were
thenidentified based on spatial information as compared to shuffled
distributions, as described in detail in ref. 25 (see example place cells
in Extended Data Fig. 7b, left).

Detection of SWRs and removal of trials with ripples

Todetect SWR events, the local field potential (LFP) signal was filtered
between 100 Hz and 200 Hz, and the instantaneous power of the fil-
tered signal was computed using the Hilbert transform. SWR events
were defined by using two criteria. (1) We extracted events in which
the power of the band-pass-filtered LFP (100-200 Hz) exceeded a
threshold of 3 s.d. above the mean power. (2) We used a ‘ripple/high
gamma ratio’—the ratio between the peak power of the LFP signal
between 100 Hz and 200 Hz (ripple range) and the peak power of the
LFP between 60 Hz and 100 Hz (high gamma range)—and required a
ratio of >1.5 to discern clear spectral peaks in the ripple range. Only
candidate SWR events that metboth criteriawere selected for further
analysis. To assess the possible contribution of SWR events to the fir-
ing of time cells, we recalculated the temporal tuning curves by using

Nature Neuroscience


http://www.nature.com/natureneuroscience

Article

https://doi.org/10.1038/s41593-022-01226-y

only ripple-free trials and compared them to temporal tuning curves
calculated using all trials (Extended Data Fig. 2g,h).

Statistics

No statistical methods were used to pre-determine sample sizes, but
our sample sizes (both the number of animals and the number of neu-
rons) are similar to those reported in previous publications, in both
rodents and bats®’****, Data distribution was assumed to be normal,
but this was not formally tested. In a few cases where the data did not
seem normally distributed, we used non-parametric tests (see below).

Significant time fields were detected using a shuffling method
(99th percentile, Bonferroni-corrected), as detailed above. We used
the Wilcoxon rank-sum test everywhere for comparing the medians of
distributions. We used the Kolmogorov-Smirnov test everywhere for
comparing the shapes of distributions. We used the Pearson correla-
tion coefficient for estimating correlations, except a few cases where
the datadid not seem normally distributed, in which case we reported
both the Pearson correlation and the non-parametric Spearman cor-
relation. We used anon-parametric F-test (Ansari-Bradley test) to test
for equal variances in the distributions of time differences between
differentlanding balls (AT, e.me) in Figs. 4c,d and Fig. 51and Extended
Data Fig. 8g—-i. We used the Hartigan’s dip test for unimodality* to
test whether the distribution in Fig. 4e is unimodal. In Extended Data
Fig. 6f, we used the log-odds ratio test for testing the difference in the
percentage of time cells between sessions 1 and 2. All the statistical
tests were two-sided, unless otherwise indicated.

Data collection and analysis were not performed blinded to the
conditions of the experiments. The study did not involve experimen-
tal groups, and, therefore, no randomization and no blinding were
required. No animals and no data points were excluded from the analy-
ses in this study, except as described above in the section ‘Definition
of time cells’, where we defined the inclusion criteria for time cells.

Reporting summary
Furtherinformation onresearch designisavailablein the Nature Port-
folio Reporting Summary linked to this article.

Data availability

All the behavioral and neural data in this study are available from the
authors upon reasonable request and are also accessible online at
Zenodo™.

Code availability

All the behavioral and neural data in this study were analyzed using
custom code in MATLAB (version 2021b). The code that supports the
conclusions of this study is available fromthe authors upon reasonable
request and is also accessible online at Zenodo*’.
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Extended Data Fig. 1| Behavioral setup, conditions, and behavior. (a)
Behavioral setup. Bats flew inside a flight-room (2.35 x 2.69 x 2.56 m, seen

here fromtop side view). The demonstrator bat (blue) was trained to fly from
the Start ball, roughly randomly to either landing-ball A or B, and back. The
observer bat was trained to watch, remember and imitate the ball-choices of the
demonstrator bat. Different trials are shown, one to ball A (trial /) and one to ball
B (trialj). Balls and bats are not drawn to scale, for display purposes. (b) The six
different conditions which were used to identify and analyze time-cells. Top row:
the 3 conditions which were used to analyze self-time-cells. In each of these 3
conditions, the firing activity of cells recorded in dorsal CAl of the observer bat
was aligned to the landing moment of the observer bat on one of the landing-balls
(columns). Bottom row: the 3 conditions which were used to analyze time-cells
for the other bat. In each condition, the firing activity of cells recorded in the
observer’s dorsal CAl was aligned to the landing moment of the other bat, the
demonstrator. To enhance the clarity of reading the main text, we re-plotted the

top row of panel b also in main Fig. 1b, and re-plotted the bottom row of panel b
also in main Fig. 5a. (c) Two examples of bat behavior from the experiment. For
each example: x-axis is the elapsed time in seconds; y-axis shows the distance in
meters of each bat (demonstrator in blue, observer in red) from the Start ball. For
clarity, the distances during roundtrips to balls A or B were plotted with opposite
signs (A - positive distances, B - negative distances). In the top example, the two
bats flew alternatingly from the Start ball to ball Band back and then to ball Aand
back; in the bottom example, the opposite order occurred: they first flew to ball A
and then to ball B. (d) Distribution of trial durations in each of the three locations
intheroom (A, Band Start; shown is the time spent by the observer-bat on each
of the landing-balls, from the moment of landing to takeoff); the rightmost bin
corresponds to trial-durations > 20 s. The median trial-duration in each location
was marked by ared arrowhead. (e) Coronal Nissl-stained section through dorsal
hippocampus of one observer bat. Arrowhead, electrolytic lesion at the end of a
tetrode-track, located in dorsal CAl.
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Extended Data Fig. 2| See next page for caption.
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Extended Data Fig. 2| The duration of time-fields increased with the neuron’s
preferred-time; analysis of non time-cells; and control for sharp-wave
ripples. (a-d) The temporal resolution of time-cells deteriorated with the
passage of time. (a) Examples: Spike rasters (top), color-coded rasters (middle),
and temporal tuning-curves (bottom) for a subset of the time-cells from Fig. 1f.
Each column represents one time-cell. Top row - Spike rasters: x-axis, elapsed
time from the moment the bat has landed (time 0); y-axis, repeated landings
(trials). Eachraster corresponds to asingle location in the room (indicated above
theraster), and each linein the raster shows the spiking activity in a single trial;
eachtick represents one spike. The trials in each raster were sorted according to
trial-duration; the thin gray line denotes the trial-end (shown are only spikes
contained within the trial). Middle row - Color-coded rasters: arranged as the
spike-rasters above, but showing the instantaneous firing-rate instead of raw
spikes (100 ms time-bins). Plotted as in Fig. 1e; color-scale ranges from zero
(blue) to the maximal firing-rate in each panel (red; maximal rate indicated).
Bottom row - Temporal tuning-curve for each cell (black trace), whichis the
averaged firing-rate of the neuron (average of the color-coded raster above). The
preferred-timeis indicated above the peak-firing of each cell (marked also by a
vertical red line). Green shading represents statistically-significant time bins
(Methods). Red curve, width-at-half-height of the time-field. Note how the width
ofthe time-field (duration of the red curve) increases with a neuron’s preferred-
time. (b-c) Plots showing that time-cells are aligned to landing, and not to takeoff.
(b) Examples: color-coded rasters for the same cells as in panel a, aligned here to
the bat’s takeoff. x-axis, elapsed time until the moment the bat took off (time 0);
y-axis, repeated landings (trials). Each line in the raster represents the firing-rate
for the cell in asingle trial. The trials in each raster were sorted according to
trial-duration (same sorting as in panel a). Color-scale ranges from zero (blue) to
the maximal firing-rate in each panel (red; maximal rate indicated). Note that the
peak firing across trials is diagonally tilted, and is aligned to landing and not to
takeoff. (c) Distributions of Spearman correlations between the time of
peak-firing in each trial and the trial-number (ordered by trial-duration). Cells
whose firing is truly aligned to landing are expected to show zero correlation
when the rasters are aligned to landing (as seen in the example rasters in panel a)
and a negative correlation when the rasters are aligned to takeoff (as seenin the
negative correlations in the examples in panel b). The distributions in the current
panel were plotted for all the significant time-cell rasters (n =274 cells x
positions), separately when the rasters are aligned to landing (blue) or aligned to
takeoff (pink). Note that, as expected, the distribution for rasters that we aligned
to takeoff was significantly shifted towards -1, as compared to the distribution
forrasters aligned to landing (two-sided t-test: P=7.7 x 10"7°) - indicating that
time-cell rasters show vertical bands when aligned to landing (asin panel a), and
aretilted when aligned to takeoff (as in panel b); this means that the time-cells are
tuned to the elapsed time from landing, rather than to time-until-takeoff (the
small rightward shift in the blue histogram occurs because of late noisy firing in
longer trials, as seen for example in panel a, fourth cell, which biases the
correlations positively). Furthermore, since the time-cells in this analysis were
defined based on the alignment of their firing to landing, we performed an
additional analysis without such definition - to test whether takeoff (departure)
canalso trigger time-sequences, perhaps in a different set of neurons. To thisend,
we aligned the activity of all the neurons to the takeoff instead of landing, and
sought to identify significant responses with this new alignment. We used in this
analysis the exact same time-binning and same criteria to detect pure time-cells,
contextual time-cells, and social time-cells, as we used for ‘landing-triggered’
time-cells throughout the paper - but now aligned on takeoff. This analysis
yielded a substantially lower number of significant time-cells from each class: we

found only 13 significant pure time-cells when aligned to takeoff versus 44 pure
time-cells when aligned to landing; only 65 contextual time-cells when aligned to
takeoff versus 125 contextual time-cells when aligned to landing; and only 28
social time-cells when aligned to takeoff versus 56 social time-cells when aligned
to landing (all numbers are cells, not cells x positions). This much-lower
percentage of significant cells when aligning to takeoff versus landing, strongly
suggests that the relevant trigger for time-cells is landing and not takeoff. (d)
Scatter plots of the time-field duration (field width at half-height) versus the
preferred time, for all the significant time-fields (dots), in each of the three
locationsin the room: ball A (left; n =116 significant time-fields), ball B (middle; n
=98), and Start ball (right; n = 61). All three scatter-plots showed significant
positive correlations: ball A: Spearman p=0.41, P=4.6 x 10°%; ball B: p= 0.57, P=
1.3x107%; Startball: p=0.82, P=1.1 x 1075 (two-sided tests) (the significant
positive correlations persisted also after eliminating from the correlations those
time-cells with preferred time <0.5-s: ball A:p=0.24, P=0.01; ball B: p=0.46, P=
2.4 x1075; Startball: p=0.77, P=4.6 x10°°). This demonstrates that in each of the 3
locationsinthe room (A, B, Start), the time-resolution of time-fields deteriorated
with the passage of time - as reported also for time-cells in rats”*'%", (e)
Distribution of the time differences AT between the estimated time of landing
from the video data and the estimated time of landing from the accelerometer
signal (mean and standard deviation of AT: p=78.4 ms; 6 =90.7 ms; n=5695
trials; the video-based landing time [our main estimate of landing-time in this
study] was explained in the Methods - and the accelerometer-based landing time
was estimated as the peak in the accelerometer signal, which exceeded1.5x g (1.5
times the Earth’s gravitational acceleration), and occurred within a time window
of +300 ms around the video-based landing-time). Note that the standard
deviation of this distribution was less than the time-bin resolution (100-ms bins)
that we used for computing the temporal tuning-curves of the time-cells -
indicating a very precise estimation of the landing-time. (f) Non time-cells. Top
row: Temporal firing pattern of all the non-time-cells, plotted as in Fig. 1g: the
cellsare plotted separately for each of the landing-balls, and are ordered by the
time of their peak firing-rate. Bottom row: the distributions of peak z-scores for
time-cells (blue curves) and non time-cells (red curves). The firing sequences of
non-time cells were clearly very different from the firing sequences of the
significant time-cells shown in Fig. 1g: The z-scores were dramatically lower for
non time-cells as compared to time-cells. In addition, the sequences of non-time
celltended to fall close to the diagonal in the top row. Both of these differences
indicate that non time-cells do not exhibit true temporal tuning. (g-h) Sharp-
wave ripples (SWRs) do not generate the temporal responses of time-cells. (g)
Examples of two time-cells (rows), showing high similarity when plotted with
versus without trials that included SWRs (columns; compare left versus right;
example cells are from bat1[top row] and bat 2 [bottom row]). (h) Distribution of
Pearson correlation coefficients between the temporal tuning-curves of
time-cells when computed using all trials versus when computed after removal of
trials with SWRs. Blue histogram, correlations for the data for all time cells (n =
274 cells x positions; note that the rate of SWRs was very low and they occurred
only onasmallsubset of the trials: on average 0.97% of the trials). Black line,
distribution of correlations for cell-shuffling (correlation between the temporal
tuning-curve computed over all trials for cell i and the temporal tuning-curve
computed over trials without SWRs for cellj, for i # j). The real data correlations
were significantly higher than the shuffles (two-sided ¢-test with unequal
variances: P<107; ¢=485.2; df=7.4 x 10*). Inset: enlarged view of the blue
histogram (zoom-in on the x-axis between 0.96 - 1). These high correlations
indicate that the temporal tuning of time cells could not be explained by the
occurrence of sharp-wave ripples.
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Extended Data Fig. 3| Additional 20 examples of self time-cells. For each color-coded raster above); the preferred-time is indicated above the peak-
example cell, the top panel shows the color-coded raster plot: x-axis, elapsed firing of each cell (marked also by a vertical red line); green shading represents
time from the moment the bat has landed (time 0); y-axis, repeated landings statistically-significant time bins; red curve shows the width-at-half-height of
(trials); plotted as in main Fig. 1e. The bottom panel shows the temporal tuning- the time-field. Cells were sorted by increased preferred times (from top-left to

curve (black trace), which s the averaged firing-rate of each cell (average of the bottom-right panel).
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Extended Data Fig. 4| Time-fields represent aninternally-generated signal,
notlinked to movement. (a-d) Only 12.0% of the 133 time-cells [cells x positions]
that were recorded together with an accelerometer signal (16/133 cells) showed
significant correlation between the trial-to-trial variation in firing-rate and

the trial-to-trial variation in the acceleration signal. (a-b) Six typical time-cells
(columns) that showed no significant correlation between the trial-to-trial
variationin firing-rate and the trial-to-trial variation in the acceleration signal. (a)
Top: color-coded raster plot, aligned to the moment of landing (¢ = 0). Trials (y-
axis) are sorted according to the trial duration. Plotted as in main Fig. 1f. Middle:
temporal tuning-curves - the average firing-rate across all recorded trials,
aligned to the moment of landing of the observer bat. Green shading represents
statistically-significant time bins. Bottom: acceleration signal, averaged across
trials (gray shading, mean + SEM). The acceleration signal shown here included
flight-datafor ¢ < 0, while for ¢ > 0 we only included here data recorded when

the bat was on the ball (before takeoff). Note the large acceleration signal prior
tolanding (prior to t=0) in all cases, which is caused by the bat’s flight - but

then during the significant time bins (green shading) there was basically no
acceleration signal. In other words, the bats hardly moved during the firing of the
time-cells. All three panels for each cell (top, middle, bottom) are aligned to the
landing-moment (¢=0) and to each other. (b) Six example scatter plots (for the

6 cellsin panel a), showing that there is no significant correlation between the
trial-to-trial variation in peak firing-rate and the trial-to-trial variation in the peak
acceleration signal (both the peak firing-rate and the peak acceleration signal
were measured inside the green rectangles in panel a; we used here a one-sided
test for the Pearson correlation, and not two-sided test, because we assumed that
only positive correlations are physiologically meaningful). These six examples
represent the typical majority of time-cells that we recorded in experiments

with accelerometer signal - which showed no trial-to-trial correlation between
firing-rate and acceleration. This indicates that time-cells represent an internally-
generated signal, unrelated to movement. (c-d) Examples of two rare neurons
(columns) which represent the small minority of time-cells that showed a
significant correlation between the trial-to-trial variation in firing-rate and the
trial-to-trial variation in the acceleration signal. Plotted as in panelsaand b. (c)
Color-coded rasters, temporal tuning-curves, and acceleration signals - plotted
asin panel a. (d) Scatters, plotted as inb. The example cell on the right showed
the highest correlation value among all our neurons (r=0.67); we note, however,
that when removing the outlier point, the correlation became non-significant
(r=0.23,P=0.16). (e-f) The bats did not perform on the balls stereotypical
movements that were similar across trials - suggesting that stereotypical
movements could not explain the firing of time-cells. (e) Examples: Three
acceleration traces recorded on three different trials on the same day, all from the
same ball (a significant time-cell was recorded on that day on the same ball). Note

thatin these three example traces: (i) the acceleration values were extremely

low (<0.1g, where gis the Earth’s gravity), and (ii) the traces were not similar to
each other - indicating that this bat did not exhibit stereotypical movements
across trials. (f) Population: Distribution of Pearson correlations between the
acceleration signals recorded on different trials of the same day, on the same ball
(computed from 0.5-s until trial-end; n = 39,323 trial-pairs) - that is, correlations
between acceleration-traces as plotted in panel e. The correlation values were
pooled across landing balls A and B and across experimental days and bats - only
for days and balls on which a significant time-cell was recorded. The correlation
oftheacceleration signal between the different trials was very low (mean<r>=
0.052) - indicating that there were no stereotypical movements across trials

that could explain the firing of time-cells. (g-i) No relation between time of

firing and time of reward. (g) A typical example neuron showing no significant
correlation between the time of peak neuronal firing (x-axis) and the time of
reward delivery after landing (y-axis; extracted from the raw videos), with dots
showingindividual trials (Pearson r=0.23; two-sided t-test, P=0.16; n =38 trials).
Note there was large variability in the time-of-reward (large spread along the
y-axis), as compared to the small variability in the neuron’s time of firing across
the trials (small spread along the x-axis). (h) Left panel, scatter plot, showing a
similar plot as in panel g (with dots showing individual trials), pooled across all
the example cells shown in main Fig. 1. Right panel, same scatter as on the left, but
here the x-axis data and y-axis data for each neuron were normalized by the mean
for that neuron, in order to expose possible correlations which may be masked
due to the high variability of preferred-times across different neurons. Both
scatters show a lack of significant trial-to-trial correlation between the time of
firing for each time-cell and the time of reward on the same trial. In addition, the
timing of reward-delivery was highly variable, arguing against arole for reward
in the temporal tuning of time-cells. (i) Histogram showing the distribution of
Pearson correlation coefficients between the time of peak firing and the time of
reward delivery - like the correlation for the cell shownin panel g - plotted here
for all the example cells shown in Fig.1(in panels hand i, shownare n=9 cells

for which we also recorded raw video movies in addition to the video-tracking;
this raw-video footage was used to measure the time of reward). Almost all these
cells (except one) showed non-significant correlation (P> 0.05). (j) Raster of the
times of ear-movements (x-axis) that were measured across 10 randomly-chosen
landing trials (y-axis); the measurements were performed manually from high-
speed camera recordings at 100 frames/second. This raster shows that, first, ear
movements are generally repetitive — and hence cannot explain the firing of time-
cells, which always fire only once per trial, rather than repetitively; and second,
ear movements do not show stereotypical structure across trials (note the lack of
vertical bands in this raster) - and therefore ear movements cannot underlie the
temporally-reproducible, distinct firing of time-cells.
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Extended Data Fig. 5| See next page for caption.
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Extended DataFig. 5| Firing sequences in simultaneously recorded time-cells
are similar to the population time-cell sequences pooled across all days;
and decoding elapsed-time from time cells. (a) Temporal tuning curves for
all the significant time-cells, pooled across all experimental days and bats (the 3
panels correspond to the 3 different locations in the room: balls A, B and Start).
These plots are identical to those shown in main Fig. 1g, and were plotted here
again to facilitate comparison with panel b. (b-d) Simultaneously-recorded
time-cells. (b) Three examples of internally-generated temporal sequences,

for ensembles of neurons that were recorded simultaneously: These examples
depictsimilar sequences (with a similar time-span) to the population in panel
a.These 3 ensembles were recorded on 3 different recording-days, in the 3
differentlocations in the room (balls A, B, Start). We could not obtain larger
numbers of simultaneous neurons because of the limited number of tetrodes

in this study (n=4 tetrodes; we obtained up to 12 simultaneously recorded
significant time-cells per day). (c) All the days x locations (for all bats) in
whichwe had =2 simultaneously recorded time-cells (n = 57 days x locations).
The 3 panels represent the 3 locations in the room. x-axis, preferred time for
each neuron (circles); y-axis, experimental day; horizontal lines in each panel
represent groups of simultaneously recorded time-cells. Experimental days

are sorted according to the total span of preferred-times for the time-cells
recorded on that day. Green: the 3 examples in panel b of internally-generated
firing sequences. The red numbers on the right indicate the identity of the

bat (no.1-4) from which the cells were recorded. (d) Distributions of time-
differences (AT) between the preferred-times for all the cell-pairs recorded
simultaneously on the same day (gray bars; n=151,109 and 23 cell-pairs on
landing balls A, B and Start respectively), and all the cell-pairs recorded on
different days (black lines; n=12800, 9288 and 3614 cell-pairs on landing balls
A,Band Startrespectively), plotted separately for the 3 locations in the room.
The gray and black distributions were statistically indistinguishable (two-sided
Kolmogorov-Smirnov tests: P=0.126, P=0.128 and P=0.208, for balls A, Band
Start, respectively). This demonstrates that the pooled sequences (main Fig. 1g)
arereliably representing the within-day sequences - indicating that time-cellsin
the bat hippocampus forminternally-generated firing sequences. (e) Bayesian
maximume-likelihood decoding of elapsed time. Left panel: Confusion matrix
showing the decoded time (y-axis) versus the actual elapsed time (x-axis), using
all the time cells, inall three locations. The probabilities in each time-bin were
divided by the uniform chance probability. Right panel: Temporal decoding

error for each time bin (200-ms bins were used here), computed between 0-8s,
for three cell groups: red line, all the time-cells (n =274 cells x positions); peach
line, contextual time-cells only (cells that were time-tuned in only one location;
n=123cells x positions); blue line, pure time-cells only (cells that were time-
tuned on both A and B; n =88 cells x positions). Note the temporal decoding
error was < 0.6 s for all the time bins up to 8 s - indicating that these neurons
carry robustinformation about elapsed time, up to 8 s after landing. (f) Cross-
decoding of elapsed time: For each trial we trained a decoder on responses at
the otherlocation. Only pure time-cells with preferred-time difference of AT <1s
between locations were used to train the decoder. The confusion matrix shows
the decoded time (y-axis) versus the actual elapsed time (x-axis); the decoded
probabilities in each time-bin were divided by the uniform chance probability.
(g) Bayesian maximum-likelihood decoding of the origin of flight history -
namely, decoding from where did the bat fly to the Start ball - this decoding
was performed based on the firing of time-cells when the bat was on the Start
ball. Left panel: the identity of the previous landing ball (ball A or B) can be
decoded (classified) above chance level during the first -4 seconds after landing
on the Start ball. To assess the statistical significance of decoding in each time
bin, we compared the observed classification accuracy to a shuffle test where
we randomly permuted the true identities of balls A and B from which the bat
flew. We repeated the shuffling 1,000 times and calculated the classification
accuracy for each of the 1,000 shuffle-repeats (permutations) in each time bin.
Asterisks denote time bins in which the empirically-observed classification
accuracy showed significance at 95% [two-sided] compared to the distribution of
classification accuracy of the shuffle tests (the observed classification accuracy
was higher than the accuracy of 997.5 of the shuffles - Bonferroni-corrected

for multiple comparisons for the number of time bins; P < 0.0025). Right panel:
the number of time-cells, in each time bin, which showed significant difference
intheir firing-rate between trials when the bat flew from ball A to the Start

ball versus from ball B to the Start ball. These results support the notion that
time-cells encode relevant behavioral information. (h) Violin plots showing

the distributions of peak firing-rates for pure time-cells, contextual time-cells,
and non-time cells (n=151,123, and 603 cells x positions, respectively). Dots,
individual neurons (cells x positions); red circles, median for each cell group.
Peak firing-rate plotted in this panel is the peak of the temporal response
(temporal tuning-curve).
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Extended Data Fig. 6 | Self time-cells: stability across sessions. In session 1, the
observer bat mimicked the flight-choices of the demonstrator bat; in session 2,
the observer mimicked an object (Methods). Session 2 was recorded immediately
after session 1. This Extended Data Figure shows that the temporal-tuning was
generally conserved between the two sessions; however, it also shows thatin
session 2, the distribution of preferred-times in the Start location became more
similar to thatin locations A and B (panels a-b: compare the bottom-left panelinb
to the two panels above it and to the bottom-left panel in a; and see also panel e -
noteinsession 2 the distributions of preferred-times became more similar across
the 3 landing-balls; see below for Kolmogorov-Smirnov tests). The main change in
session 2 was areduction in the percentage of cells with preferred-times <1-son
the Start ball (panel f: note in session 2 [S2] the green and purple bars were more
similar to each other than in session1[S1]). This figure suggests that since amajor
change between session 1and session 2 was the presence of the demonstrator
batat the Start location in session 1, versus its absence in session 2, this presence/
absence may underlie the observed neural differences in the firing sequences
between the Start ball and balls A and B in session 1. (a) The temporal tuning-
curve of time-cells was stable across consecutive sessions. Left column, temporal
tuning curves of time-cells that were significantly-tuned in session 1. Cells were
sorted according to their preferred time of firing. Right column, temporal tuning
curves of the same cells which were tuned in session 1, but plotted for session

2; cellswere sorted accordingto their preferred time in session 1. Note the
stability of the internally-generated firing sequences across consecutive sessions
(compareleft and right panels). (b) Same analysis as in panel a, but for significant
time-cellsinsession 2. Panels aand b demonstrate the stability of the sequences
over the two sessions. (c) Violin plots of the distributions of Pearson correlations
between the temporal tuning-curves in the two sessions; we repeated this
calculation for each of the three locations. The correlations between the two
sessions were very highat locations A and B (medians: ball A, r=0.86, n=>51cells;
ball B, r=0.91, n=33 cells), and were statistically indistinguishable between balls
Aand B (two-sided Wilcoxon rank-sum test, P=0.59; two-sided Kolmogorov-
Smirnov test, P=0.34) - indicating stability of the time representation across

the two sessions for balls A and B. By contrast, the across-session correlations

for the Start location were significantly lower (median on Start: r=0.72,n=17
cells; comparing correlationsin A versus Start: two-sided Wilcoxon rank-sum
test, P<0.002; two-sided Kolmogorov-Smirnov test, P < 0.005; comparing
correlations in B versus Start: two-sided Wilcoxon rank-sum test, P < 0.002; two-
sided Kolmogorov-Smirnov test, P< 0.002) - consistent with the explanation
that the presence of the demonstrator bat at the Start location in session 1

was responsible for the difference in the firing sequences in session 1 between

the Start ball and the other two locations, A and B; note the demonstrator was
removed from the room in session 2. (d) Gray bars, distribution of differences

in preferred-times (AT) for the same neuron between session1and session 2 (at
the samelocation). Plotted for all the time-cells that were significant in session

1; pooled across the 3 balls (n=174 cells x positions; this number is smaller than
the total number of time-cells in this study, because we included here only the
significant time-cells where session 2 was run, which was only for a subset of the
cells). The sharp peak at AT= 0 indicates that the preferred-time of time-cells
was stable across sessions. Red line, shuffle distribution (cell shuffling: AT for
celliinsession1minus celljin session 2, for i #; two-sided Kolmogorov-Smirnov
test of data versus shuffles, P= 6.8 x 107). (e) Cumulative distribution functions
(CDF) for the preferred-times of the time-cells in each location, for session 1 (left)
and session 2 (right) (ball A: yellow; ball B: cyan; Start ball: green). In session 1

the distribution of preferred-times on the Start ball (green) was quite different
from those on balls A or B. By contrast, in session 2, the CDF for the Start ball
became statistically indistinguishable from the CDFs for balls A and B (two-sided
Kolmogorov-Smirnov test on time segments between =0 and t=4 s: Session 1.
Start ball versus ball A: P=0.047; Start ball versus ball B: P=0.047; ball A versus
ball B: P=0.74; Session 2: Start ball versus ball A: P=0.15; Start ball versus ball B:
P=0.37; ball Aversus ball B: P=0.74). Note that we removed the demonstrator
bat from the roomin session 2, so only in session1the observer bat was landing
next to the demonstrator bat on the Start ball. Taken together, this suggests

that the presence of the demonstrator bat at the Start location in session 1was
responsible for the difference in the firing sequences seenin session 1 between
the Start ball and the other two locations, A and B - while in session 2, when the
demonstrator was removed from the room, the time-cell sequences became
more similar to each other. (f) Percentage of time-cells with short preferred-
times (<1s). Magenta bars, the percentage of time-cells with short preferred-
times on balls A and B was statistically indistinguishable between session1(S1; n=
213 cells) and session 2 (S2; n =132 cells) (two-sided log odds ratio test: P=0.055).
Greenbars, same for the Start ball: here, the percentage of time-cells with short
preferred-times was significantly smaller in session 2 (52; n=50 cells) thanin
session1(SL; n= 61 cells) (two-sided log odds ratio test: P < 10°°). Together, panels
a-cand e-fsuggest that the internally-generated firing sequence on the Start ball
became more similar to those on balls A and B during session 2, when the other
bat (demonstrator) was absent from the Start-ball and from the room altogether.
(g) Venn diagram depicting the distribution of time-cell tuning in the different
locations, in session 2. Note that we included in this figure only neurons that were
stably spike-sorted across both sessions (see Methods section on ‘Spike sorting’).
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Extended Data Fig. 7| Time-cells (as measured during motionless hanging)
and place-cells (as measured in-flight) represent alargely overlapping
population of cells - but there was no clear relation between their preferred-
time and preferred-place. (a) Top view of the experimental room (2.35 x 2.69 m,
with2.56 m height). Three landing-balls were positioned inside the room,
designated as locations ‘Start’, ‘A’ and ‘B’. (b) Five examples of dorsal hippocampal
CAlneurons which were place-cells when the observer bat was flying (left), and
were time-cells when the observer bat was motionlessly hanging from one of the
landing balls (right). These examples demonstrate two things: First, that time
cellsand place cells are overlapping populations of cells (see also main Fig. 1h for
apopulation analysis). Second, these examples demonstrate that the place-field
and time-field of the same neuron are not necessarily related to each otherina
simple way: The top 2 examples are cells whose place-fields were on opposite
sides from the location of the time-field; and the bottom 3 examples demonstrate
thelack of clear relation between preferred-time and preferred-place - for
example late time-field for a cell whose place-field was early along the flight (third
from the top), or vice versa (fourth from the top). First example: Left, place-cell
firing rate map (top view) for flights from landing balls A and B to the Start ball.
Right, time-cell raster for landing ball A. Note that the place-field islocated on
the flight path from ball B to the Start ball, whereas the time-field is on the other
side - onball A. Second example: Left, place-cell firing rate map for flights from
the Start ball to balls A and B. Right, time-cell raster for ball A. Note that the place-

fieldis located on the side of B, while the time-field is on the other side - on ball
A.Third example: Left, place-cell firing rate map for flights from the Start ball to
balls A and B. Right, time-cell raster for ball B. Note that the place-field is located
close to the Start ball - earlyin the flight to B, while the time-field when the bat
was on B occurs latein time. Fourth example: Left, Place-cell firing rate map for
flights from landing balls A and B to the Start ball. Right, time-cell raster for ball
B. Note that the place-field is located mid-way during the flight from B to Start,
while the time-field occurs early in time. Fifth example: Left, place-cell firing rate
map for flights from the Start ball to balls A and B. Right, time-cell raster on ball A.
Note that the place-field is located mid-way during the flight, while the time-field
occurs relatively early in time. (c) Population analysis. No significant correlation
was found between the preferred time of firing after landing (x-axis) and the
distance of the place-field peak from the takeoff-ball (y-axis) (Pearson r=-0.03, P
=0.64; Spearman p =-0.04, P=0.54; two-sided tests). Plotted here are all the cells
which were both significant place-cells when the bat was flying and significant
time-cells when the bat was hanging motionlessly on one of the landing balls (n =
135 cells; note the number of dots plotted here [n =194] is larger than the number
of cells [n=135] because neurons that had significant place-fields in the two
flight-directions have contributed two dots to this scatter, and likewise for cells
withsignificant time-fields in multiple locations [multiple balls]). Overall, there
was no strong systematic relation between the preferred-time and preferred-
place of firing for bat dorsal CAl neurons.

Nature Neuroscience


http://www.nature.com/natureneuroscience

Article https://doi.org/10.1038/s41593-022-01226-y

Individual bats

T

a
Ball A BallB ] Start ball

35

880 faus ,ééé

o

Trial duration (s)
Cumulative fraction of cells

0w @

LLY

WN =
o N
o

Bat:1 2 3 4 1 2 3 4 1 2 3 4 0 Time from landing (s) 8 O 8 0 8
Ball A Ball B Start ball
d
¢ Bat 1 Bat 2
Bat1 Place Time Place Time
cells cells cells cells
Bat 2
™ Bat3 Bat4
Place Time Place Time
Bat 3 cells cells cells cells
Bat 4 i = -
f Pure Time t_:ells g Contextual Time-cells
subsampling
230 80 — AT A-A,&B;B,
0 Time from 8 == Ball shuffling A-B, & B -A,
landing (s) @ % .
5 b Non-parametric
8 8 F-test: P = 4.0e-17
ko
e o
Pure Time-cells 0
-1 0 1 -8 0 8
r=0.38 Pearson correlation AT preferred time (s)
P=1.1e-02
6 7
p=0.33 PN @ B h Pure Time-cells
= " s
P=28e02 ~ o o, _ .
c . 60 == AT preferred time A -B, y Non-parametric
Se 4 .l } A
2a ° /. ° == Cellshuffing A,-B, F-test: P = 6.5e-02
% K R , 7 ;f, AT preferred time A,-B, y Non-parametric
£ 5 Cell shuffling A_-B F-test: P = 4.6e-02
2T 2|® o @6 ° 5 2
£ e® o S
s [
(J
e (Y ® 0 +=* 1
0 & %% o ) 8 0 8
0 2 4 6 ) AT preferred time (s)
Preferred time on !
landing ball A (s)
80 == AT preferred time A, -A, \ Non-parametric
. . i - F-test: P = 8.0e-04
Shuffled pure Time-cells Cell shuffling A,-A,
% AT preferred time B1-B2 } Non-parametric
6 £ Cell shuffling B, -B F-test: P = 2.9¢-03
g 1772
3]
o
c o~
5w ,
E o 4 0 ==t 1
£= 8 8
o AT preferred time (s)
5 £
e 2 k
@ = AT A-B for odd!
Pure vs. Contextual Pure vs. All cells shuffling 100 -5 for oda/even
0 10
2 2 (P < 0.05) = 96.6% == AT A-B for odd/even
0, P < 0.05) = 96.3% <0.05) = 96.!
o > a 5 3 ( ) o 3 o 2 = AT A-A/B-B odd/even
Preferred time on %' f‘:; é
i c c
landing ball A (s) g g
& &
0 0 0
P-vall 0.5 0.5 -8 0 8
value AT preferred time (s)
0.05 0.05

Extended Data Fig. 8 | See next page for caption.

Nature Neuroscience


http://www.nature.com/natureneuroscience

Article

https://doi.org/10.1038/s41593-022-01226-y

Extended Data Fig. 8 | Time tuning across different individual bats, and
analysis of pure time-cells. (a-d) Data for individual bats. (a) Trial durations at
each ofthe locations in the room (balls A, Band Start), for each of the 4 observer
bats which we recorded. Horizontal lines in the box-plots show the median trial
duration, boxes show the 25" to 75" percentiles, and vertical lines show the 10" to
90" percentiles. n =340, 628, 861 and 174 trials on landing ball A, for each of the
bats respectively; n=123, 624,839 and 119 trials on landing ball B, for each of the
bats respectively; n=439,861,1277 and 316 trials on the Start ball, for each of the
bats respectively. Mean trial durations for landing ball A: 7.9,7.7,7.2, 8.8 s; mean
trial durations for landing ball B: 9.1, 6.3, 6.9, 7.1 s; mean trial durations for landing
ball Start:14.5,10.5,10.4,14.7 s.10™ percentile trial duration for landing ball A:
4.0,4.3,3.6,3.85;10% percentile trial duration for landing ball B: 5.4, 3.5,4.0,3.9s;
10" percentile trial duration for the Start ball: 3.9,3.9,3.9 4.5 s; 90" percentile
trial duration for landing ball A:12.5,11.6,10.9,14.2 s; 90" percentile trial duration
forlanding ball B:14,9.7,10.3,10.6 s; 90" percentile trial duration for the Start
ball:31.7,17.8,17.5, 26.1 s. Minimum trial duration for landing ball A: 0.4, 0.3, 0.6,
0.6 s; minimum trial duration for landing ball B: 0.8, 0.3, 0.4, 2.4 s; minimum trial
duration for the Start ball: 0.4, 0.6, 0.4, 0.5 s. Maximum trial duration for landing
ball A:23.4,22.7,54.2.59.6 s; Maximum trial duration for landing ball B: 23.3,19.4,
43.4,31.3 s; Maximum trial duration for the Start ball: 59.3, 57.1, 56.9, 59.8 s. (b)
Cumulative functions showing the cumulative fraction of cells with a particular
preferred-time for each of the bats no.1, 2, 3 (the number of cells from bat 4 was
low and hence we omitted it from this panel). (c) Ensemble temporal sequences
for the 3 balls (columns), depicted similarly to main Fig. 1g, but plotted here
separately for the 4 bats (rows). (d) Venn diagrams showing the distributions and
overlap between place-cells and time-cells, separately for each of the 4 observer
bats. (e-f) Analysis of pure time cells. (e) Top panel: Scatter plot showing a
significant correlation between the preferred-time on landing ball A and the
preferred-time on landing ball B, for all the time-cells which were significantly
tuned onboth A andBin session 1 (Pure time-cells; Spearman rank correlation p =
0.33, P=2.8x107%; Pearson correlation r=0.38, P=0.011; two-sided tests; n=44
cells; the correlation remained significant also after removing cells with short
preferred-time of less than 0.5-s on both balls Aand B: Pearson r=0.32, P=0.041).
Toprightinset, Venn diagramillustrating the cell population analyzed here (pink
area, time-cells tuned on A and B: ‘pure time-cells’; n = 44). Bottom panel: Scatter
plot for the cell-shuffling of time cells tuned on A and B (‘pure time-cells’; n=44)
- plotting all possible combinations of the preferred-time of cell i on landing-ball
A and the preferred-time for cellj on landing-ball B, where i # j, for all the
time-cells which were significantly tuned on both A and B in session 1 (dots were
slightly jittered for display purposes). The Venn diagram illustrates the cell
population for the shuffle: as in the top panel. Note that for the majority of the
time-cells shown in the top panel (data), the difference between the preferred-
timesinlocations Aand Bwas <15 (61.4% of the cells [27/44] were within +1 s from
the diagonal - marked by the gray shaded area). This percentage is 2-3-fold larger
than expected by chance - when compared to 2 types of chance levels: (i) Only
35.2% [333/946] of the shuffles in the bottom panel were inside the gray band,
showing preferred-time differences of <1sbetween locations. (ii) Only 22% of the
cellsare expected to show differences <1s, assuming uniform distribution of
differences (the gray shaded area divided by the total area of the graph =22%). (f)
Pearson correlations in panel e (top), after uniform subsampling. Shown is the
distribution of Pearson correlations for 1,000 subsamples, which was computed
asfollows: In panel e (top), we binned the preferred times on ball A (x-axis) into 12
uniform time bins, 0.5 seconds each. Then for each subsample we chose
randomly one dot from each bin, to form 12 pairs of preferred timeson Aand B,
whose times on A were uniformly-distributed (by construction). We then
calculated the Pearson correlation for these 12 dots. This subsampling procedure
was repeated 1,000 times; the distribution of Pearson correlations for these
1,000 subsamples is shown here. The mean Pearson correlation of this histogram
was <r>=0.31. We found that 129 correlations out of the total 1,000 correlations
showed P-value < 0.05, whichamounts to 12.9% of the total subsamples. This

fraction of P-values is significantly higher than the fraction of 5% that is expected
by chance (one-sided Binomial test: P < 107°°). These results further support the
notion that pure time-cells preserved their preferred-time between balls A and B.
(g) Analysis of contextual time-cells. Solid purple: distribution (kernel density
plot) of the differences in preferred time for contextual time-cells in both
experimental sessions 1and 2, with differences computed within-ball - for both
landing-balls A and B; that s, pooling AT preferred times for A, - A,and B, - B, (n=
39 cells x positions). Dashed purple: distribution (kernel density plot) of the
shuffled AT preferred times between different landing-balls from different
sessions: A, - B,and B, - A,. These distributions were very significantly different
(two-sided nonparametric F-test [Ansari-Bradley test]: P=4.0 x 1077), indicating
that contextual time-cells showed stability across sessions, and were more
similar between different sessions of the same kind (landing on the same ball)
than between different sessions of different kind (landing on different balls). (h-i)
Comparing pure time-cells across the two sessions. (h) Distributions (kernel
density plots) of the differences in preferred time for the group of 14 cells which
were pure time-cells in both session1and session 2. Green, distribution of AT
between preferred times on ball A versus ball B, for session1(A, - B;; n=14 cells;
two-sided nonparametric F-test [Ansari-Bradley test] compared to cell-shuffling
[dotted line]: P= 6.5 x107%). Yellow, distribution of AT between preferred times on
ball A versus ball B, for session 2 (A, - B,; n=14 cells; two-sided nonparametric
F-test compared to cell-shuffling: P=4.6 x 1072). The cell shuffling distributions
(dotted lines) were calculated as the difference between the preferred times for
cellsiandj, wherei#j. (i) Distributions (kernel density plots) of the differences in
preferred time for the group of 14 cells which were significant pure time-cells in
both session1and session 2. Dark green, distribution of AT between preferred
timesin session1versus session 2, for ball A (A, - A,; n=14; two-sided
nonparametric F-test [Ansari-Bradley test] compared to cell-shuffling [dotted
line]: P=8.0 x107*). Light green, distribution of AT between preferred times in
session 1versus session 2, for ball B (B, - B,; n =14; two-sided nonparametric
F-test: P=2.9 x107%). Note that AT is strongly and significantly concentrated
around AT =0 - suggesting high stability of the pure-time-cell tuning across the
two sessions. (j-k) Matching the sample size between sets of neural data or
between neural data and shuffles. (j) Distribution of P-values over 1,000
independent two-sided nonparametric F-tests [Ansari-Bradley tests], where each
test was done between the distribution of real AT differences (ball A - B, in session
1) of the preferred-times for pure-time cells (n =44) and randomly chosen 44
samples (neurons), taken from the distribution of AT of contextual time-cells. In
each ofthe 1,000 tests the sample size of the pure time-cells and the contextual
time-cells was thus identical (matched): n=44. This distribution shows the
percentage (y-axis) of the P-values for each of the 1,000 tests (x-axis); red line
indicates the P=0.05 cutoff. The y-axis was clipped at 10% for display purposes
only. Note that 96.3% of the tests yielded P-values smaller then 0.05, indicating
that the variance of the distribution of AT in pure time-cells was significantly
smaller than the variance of the distribution in contextual time-cells - consistent
withmain Fig. 4c. (k) Similar to panel j, but here showing the distribution of
P-values between the pure time-cells (n=44) and 1,000 randomly chosen 44
samples taken from the cells-shuffling distribution of all cells. Note that 96.6% of
the tests yielded P-values smaller than 0.05, indicating that the variance of the
distribution of AT in pure time-cells was significantly smaller than the variance of
the distribution for the cells-shuffling - again consistent with main Fig. 4c. (I)
Distribution of AT for pure time cells on balls Aand B, compared to a null
distribution of shuffles for AT using the preferred times on ball A for even trials
minus preferred times on ball A for odd trials (and likewise for ball B); plotted for
all the pure time cells which exhibited a difference in preferred time of <1sec (n=
27 cells). The shuffle (null) distribution was significantly different from the data
(two-sided nonparametric F-test [Ansari-Bradley test]: P=1.4 x 10™*); but
nevertheless, the distributions of data (black) and shuffles (red) were clearly
highly similar.
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Extended Data Fig. 9 | Time cells for the other bat. (a) Scatter plot of the
time-field duration (field width at half-height) versus the preferred time, for all
the significant time-fields for the other bat, pooled across all three locations (n
=73 significant fields: blue dots; the number of dots here [73] is larger than the
number of significant time-cells for the other bat [n=56], because if a cell was
significantly time-tuned on 2 or 3 landing-balls, it contributed 2 or 3 dots to this
scatter). This scatter shows a significant positive correlation: Pearson r=0.27,
P=0.021; Spearman p=0.25, P=0.035 (two-sided tests). Thus, the resolution
oftime-fields deteriorated with the passage of time - as for self time-cells
(Extended DataFig. 2d), and as reported for time-cells in rats”*'*". (b) Firing
sequences in simultaneously-recorded time-cells for the other bat are similar to

the population time-cell sequences pooled across all days. Distributions of time-
differences (AT) between the preferred-times for all the pairs of significant time-

cells for the other, which were recorded simultaneously on the same day (gray
bars; n=28 cell-pairs), and all the cell-pairs recorded on different days (black
line; n=1672 cell-pairs), pooled over the 3 locations in the room. The gray and
black distributions were statistically indistinguishable (two-sided Kolmogorov-
Smirnov test: P=0.56). This demonstrates that the pooled sequences for time-
cells for the other bat (main Fig. 5c: diagonal panels) are reliably representing

the within-day sequences - indicating that time-cells for the other bat form
internally-generated firing sequences. (c) Additional 12 examples of time-cells
for the other. For each example cell, the top panel shows the color-coded raster
plot: x-axis, elapsed time from the moment the bat has landed (time 0); y-axis,
repeated landings (trials); plotted as in main Fig. 1e. The bottom panel shows the
temporal tuning-curve (black trace), which is the averaged firing-rate of each cell
(average of the color-coded raster above); the preferred-timeisindicated above
the peak-firing of each cell (marked also by a vertical red line); green shading
represents statistically-significant time bins; red curve shows the width-at-
half-height of the time-field. (d) Venn diagrams showing the distributions and
overlap between social place-cells and social time-cells, separately for each
ofthe 4 individual recorded bats. (e) Scatter plot of the time of peak firing of

the time-cells for the other bat versus the time of reward (dots show individual
trials, pooled across all the example cells shown in main Fig. 5; Pearson r=0.28;
P=2x10"* two-sided test; n=174 trials). Note there was large variability in the
time-of-reward (large spread along the y-axis: standard deviation=1.0 s; mean =
3.18 s), which was substantially larger than the variability in the neurons’ time of
firing across the trials (small spread along the x-axis: standard deviation =0.45 s;
mean=1.38s).
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Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.
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The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested
A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes
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Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection  Neural data acquisition was done using a wireless neural logger (SpikeLog-16, Deuteron Technologies), accelerometer data acquisition was
also done using the neural logger, video tracking was done using Neuralynx Cheetah VTS, advancing tetrodes and screening for neurons was
done using Neuralynx DigitalLynxSX and Neuralynx Cheetah (version 6.3.0).

Data analysis Spike sorting was done using SpikeSort3D (version 2.5.2.0; Neuralynx). We used MATLAB (version 2021b) custom code for data analysis. The
code will be made available upon a reasonable request from the authors, and is also accessible online at Zenodo (see link in ref. 46).

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

Data will be made available from the authors upon a reasonable request, and are also accessible online at Zenodo (see link in ref. 46).
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Sample size

Data exclusions

Replication

Randomization

Blinding

No power analysis was used to pre-determine the sample size: neither for the number of animals nor for the number of neurons. The
numbers of animals and neurons are typical for studies in this research field, in both rodents and bats (e.g. refs. 6, 7, 42-44 in the paper).

No animals and no data points were excluded from the analyses in this study — except as described in the Methods section “Definition of time
cells”, where we defined the inclusion criteria for time cells. The inclusion criteria for time cells were based on sufficient number of trials,
sufficient time on the landing-balls, sufficient number of spikes, significant response, and firing stability.

The effects described were confirmed in multiple cells recorded over multiple recordings sessions in 4 animals.

Not relevant, as there was no randomized treatment of the animals: This study is based on observing the neural responses during free
behavior of the animals.

The investigators were not blinded to the animal identity. Analysis of neural and behavior data was conducted regardless of the identity of the
animal from which the data were collected.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
|:| Antibodies |:| ChlIP-seq
|:| Eukaryotic cell lines |:| Flow cytometry
|:| Palaeontology and archaeology |:| MRI-based neuroimaging
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Animals and other research organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research, and Sex and Gender in

Research

Laboratory animals

Wild animals

Reporting on sex
Field-collected samples

Ethics oversight

Egyptian fruit bats (Rousettus aegyptiacus). Sex: male. Age: adult, 2 - 10 years old.

The bats in this study (8 male Egyptian fruit bats, Rousettus aegyptiacus) were captured as adults in Israel, using butterfly nets. They
were transported in a car to the Weizmann Institute, where they were quarantined and then joined a large bat colony at the
Institute. Following experiments, the 4 bats from which we conducted neural recordings were euthanized with pental for purpose of
brain histology.

This study used only male bats.

The study did not involve samples collected from the field

The experimental procedures described in this study were approved by the Institutional Animal Care and Use Committee (IACUC) of
the Weizmann Institute of Science - as also stated in the Methods (section "Surgery and recording techniques").

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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